
Heterogeneous Document Embeddings
for Cross-Lingual Text Classification
Alejandro Moreo1, Andrea Pedrotti12, Fabrizio Sebastiani1

1 Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
2 Dipartimento di Informatica, Università di Pisa, 56127 Pisa, Italy

firstname.lastname@isti.cnr.it

ABSTRACT
Funnelling (Fun) is a method for cross-lingual text classification
(CLC) based on a two-tier ensemble for heterogeneous transfer
learning. In Fun, 1st-tier classifiers, each working on a different,
language-dependent feature space, return a vector of calibrated
posterior probabilities (with one dimension for each class) for each
document, and the final classification decision is taken by a meta-
classifier that uses this vector as its input. The metaclassifier can
thus exploit class-class correlations, and this (among other things)
gives Fun an edge over CLC systems where these correlations
cannot be leveraged.

We here describe Generalized Funnelling (gFun), a learning en-
semble where the metaclassifier receives as input the above vector
of calibrated posterior probabilities, concatenated with document
embeddings (aligned across languages) that embody other types
of correlations, such as word-class correlations (as encoded by
Word-Class Embeddings) and word-word correlations (as encoded
by Multilingual Unsupervised or Supervised Embeddings). We show
that gFun improves on Fun by describing experiments on two large,
standard multilingual datasets for multi-label text classification.
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1 INTRODUCTION
Transfer Learning (TL) [8] is a class of machine learning tasks in
which, given a training set TrL

S
of labelled data items from a “source”

domain S, we must issue predictions for unlabelled data items from
a “target” domainT , related toS but different from it.Heterogeneous
TL (HTL) [2] denotes the set of TL tasks in which the feature spaces
FS and FT of the two domains are different (and, in general, non-
overlapping). An example HTL task is cross-lingual text classification
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(CLC), the task of classifying documents, each written in one of a
finite set L = {λ1, ..., λ |L |} of languages, according to a common
“codeframe” (or: classification scheme) Y = {y1, ...,y |Y |}. CLC can
be tackled as a TL task, with the goal of improving on the naïve
“monolingual baseline” (consisting of |L| independently generated
monolingual classifiers) by exploiting synergies among training
sets from different languages. Here, each language-specific domain
of documents is at the same time a source domain and a target
domain, according to an “all languages help each other” metaphor.

Esuli et al. [3] proposed Funnelling (Fun), a two-tier ensemble
method for HTL, and tested it on a CLC setting. In Fun, a set of
|L| 1st-tier, language-specific classifiers return, for each unlabelled
document d , a vector of |Y| calibrated posterior probabilities; each
such vector is fed to a 2nd-tier “metaclassifier” which returns the
final classification decisions. Vectors of |Y| calibrated posterior
probabilities thus form an “interlingua” among the |L| languages,
since all such vectors are in the same vector space, irrespectively
of the language of the documents they correspond to.

One of the reasons Fun outperforms the naïve monolingual base-
line is that the metaclassifier leverages class-class correlations, i.e.,
stochastic dependencies among the different classes in Y. In this
paper we propose Generalized Funnelling (gFun), an extension of
Fun capable of leveraging additional types of correlations (e.g.,
word-class correlations, word-word correlations). This is obtained
by aggregating the vector of calibrated posterior probabilities and
document embeddings that encode these additional types of corre-
lations. We here present CLC experiments in which we extend the
vectors of calibrated posterior probabilities by using Word-Class
Embeddings (WCEs) [6] andMultilingual Unsupervised or Supervised
Embeddings (MUSEs) [1], which encode word-class correlations and
word-word correlations for multiple languages, respectively.

We describe gFun in §2. In §3 we report on experiments we have
performed on two large multilingual datasets for multi-label text
classification. In §4 we conclude by sketching avenues for further
research. Our code that implements gFun is publicly available.1

2 GENERALIZED FUNNELLING
2.1 A Brief Introduction to Funnelling
Funnelling, as described in [3], comes in two variants, called Fun(kfcv)
and Fun(tat); we here disregard Fun(kfcv) and only use Fun(tat),
since in all the experiments reported in [3], Fun(tat) clearly out-
performed Fun(kfcv). Both Fun and gFun can tackle single-label
and multi-label text classification alike; for reasons of space, we
here deal only with the latter.

1https://github.com/andreapdr/gFun
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In Fun(tat), in order to train a classifier ensemble, we first train
language-specific, 1st-tier classifiers h11, ...,h

1
|L |

(with superscript
s indicating the s-th tier) from the language-specific training sets
Tr1, ...,Tr |L | . Training documents d ∈ Tri may be represented by
means of any desired vectorial representation ϕ1(d), such as, e.g.,
tfidf -weighted bag-of-words, and classifiers may be trained by any
learner, provided the resulting classifier returns, for each document
d to classify and for each class yj , a confidence score h1i (d,yj ) ∈ R,
where λi is the language document d is written in.

We then apply each 1st-tier classifierh1i to all training documents
d ∈ Tri , thus obtaining a vector

S(d) = (h1i (d,y1), ...,h
1
i (d,y |Y |)) (1)

of confidence scores for each d ∈ Tri .
The next step consists of computing (via a chosen probability cal-

ibration method) language- and class-specific calibration functions
fi j that map confidence scores h1i (d,yj ) into calibrated posterior
probabilities. We can then apply fi j to each document d ∈ Tri and
obtain a vector of calibrated posterior probabilities

ϕ2(d) = (fi1(h
1
i (d,y1)), ..., fi |Y |(h

1
i (d,y |Y |)))

= (Pr(y1 |d), ..., Pr(y |Y | |d))
(2)

At this point, we train a language-independent, 2nd-tier “meta”-
classifier h2 from all training documents d ∈

⋃ |L |
i=1 Tri , where

document d is represented by its ϕ2(d) vector. This concludes the
training phase.

In order to apply the trained ensemble to a test documentd ∈ Tei
we apply classifier h1i to d and convert the resulting vector S(d) of
confidence scores into a vector ϕ2(d) of calibrated posterior proba-
bilities. We then feed this latter into the metaclassifier h2, which
returns a vector of confidence scores (h2(d,y1), ...,h2(d,y |Y |)) from
which the final decisions are obtained in the usual way.

2.2 Introducing Heterogeneous Correlations
through Generalized Funnelling

As explained in [3], the reasons of the good performance of Fun
are essentially two. The first is that Fun learns from heterogeneous
data; i.e., while in the naïve monolingual baseline each classifier is
trained on just |Tri | labelled examples, in Fun we have a metaclas-
sifier trained on

⋃ |L |
i=1 |Tri | labelled examples, which means that all

training examples contribute to classifying all unlabelled examples,
irrespectively of the languages of the former and of the latter. The
second is that the metaclassifier leverages class-class correlations,
i.e., it learns to exploit the stochastic dependencies between classes
typical of multilabel settings.

The goal of gFun is that of allowing additional types of stochas-
tic dependencies (e.g., word-class correlations, word-word correla-
tions) to contribute to the classification process.

The key step in allowing Fun’s metaclassifier to leverage the
different language-specific training sets consists of representing
their documents in a space that is common to all languages. In
Fun, this is made possible by the fact that the 1st-tier classifiers
all return vectors of calibrated posterior probabilities. In gFun
(Algorithm 1) this process is generalized by introducing a set Ψ
of view generators, i.e., language-dependent functions mapping
documents into language-independent vectorial representations

aligned across languages, i.e., such that both the dimensionality of
the vectors and the meaning of each vector dimension are the same
for all languages.

Input : • Sets {Tr1, ..., Tr|L| } of training documents written in languages
L = {λ1, ..., λ |L| }, all labelled according to Y = {y1, ..., y |Y| };

• Sets {Te1, ..., Te|L| } of unlabelled documents written in languages
L = {λ1, ..., λ |L| }, all to be labelled according to
Y = {y1, ..., y |Y| };

• Set Ψ = {ψ1, ...,ψ |Ψ| } of view generators;
Output : • Trained gFun architecture ;

• Labels for all documents in {Te1, ..., Te|L| } ;
1 /* Training phase */

2 for λi ∈ L do
3 /* Learn the parameters of each view generator */

4 forψk ∈ Ψ do
5 θik ← fit(ψk , Tri ) ;
6 end
7 /* Generate 1st-tier language-independent views */

8 Tr′i ← (ψ1(Tri , θi1), . . . ,ψ |Ψ|(Tri , θi |Ψ|)) ;
9 /* Aggregate the language-independent views */

10 Tr′′i ← aggfunc(Tr′i ) ;
11 end
12 /* Combine all training sets */

13 Tr←
⋃|L|
i=1 Tr

′′
i ;

14 Train classifier h2 from all vectors in Tr ;
15 /* Classification phase */

16 for λi ∈ L do
17 /* Generate 1st-tier language-independent views */

18 Te′i ← (ψ1(Tei , θi1), . . . ,ψ |Ψ|(Tei , θi |Ψ|)) ;
19 /* Aggregate the language-independent views */

20 Te′′i ← aggfunc(Te′i ) ;
21 /* Invoke the meta-classifier */

22 Apply h2 to all vectors in Te′′i ;
23 end

Algorithm 1: Generalized Funnelling for CLC.

The view generatorsψk ∈ Ψ might require parameter optimization
during the training phase; this is undertaken in Line 5, indepen-
dently for each language and view generator. gFun also implements
an aggregation function (aggfunc – Line 10) that brings together
the different representations produced by the view generators, and
shapes the document representation for use in the metaclassifier.
In this case, as aggfunc we simply adopt concatenation.

Note that the original formulation of Fun (Section 2.1) thus
reduces to an instantiation of gFun in which there is a single view
generator (a calibrated classifier) and the aggregation function is
the identity function. In this case, fitting this single view generator
comes down to training the 1st-tier classifier h1i and choosing the
calibration functions fik . During the test phase, invoking the view
generator (Line 18) amounts to computing theϕ2(d) representations
(Equation 2) of the test documents.

The Fun metaclassifier has access to vectors of |Y| posterior
probabilities, and can thus leverage class-class correlations. In what
follows we instead describe new view generators that we have in-
vestigated in order to introduce additional information into gFun.
In particular, we describe view generators that mine word-class cor-
relations (Section 2.2.1) and word-word correlations (Section 2.2.2).
We also discuss a few additional modifications concerning data
normalization (Section 2.2.3) that we have introduced into gFun
and that, although subtle, bring about a substantial improvement
in the effectiveness of the method.
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2.2.1 Word-Class Correlations. For encoding word-class correla-
tions we derive document embeddings fromWord-Class Embeddings
(WCEs [6]). WCEs are supervised embeddings meant to extend
(e.g., by concatenation) other unsupervised pre-trained word em-
beddings (e.g., those produced by word2vec or GloVe) in order to
inject task-specific word meaning in multiclass text classification.
The WCE for wordw is defined as

E(w) = φ(η(w,y1), ...,η(w,y |Y |)) (3)

where η is a real-valued function that quantifies the correlation
between wordw and class yj as observed in the training set, and
where φ is any dimensionality reduction function. Here, as the η
function we adopt the normalized dot product, as proposed in [6],
whose computation is very efficient; as φ we use the identity func-
tion, and our WCEs are thus |Y|-dimensional vectors.

So far, WCEs have been tested exclusively in monolingual set-
tings. However, WCEs are naturally aligned across languages, since
WCEs have one dimension for each y ∈ Y, which is the same for
all λi ∈ L. Document embeddings relying on WCEs thus display
similar characteristics irrespective of the language in which the
document is written in. This is, to the best of our knowledge, the
first application of WCEs to a multilingual setting.

The view generator for WCEs consists of first computing, for
each language λi ∈ L, the language-specific WCE matrix Wi
(Line 5), and then projecting the tfidf matrix Xi of Tri (during
training – Line 8) or Tei (during test – Line 18) as Xi ·Wi .

2.2.2 Word-Word Correlations. For encoding word-word correla-
tions we derive document embeddings from Multilingual Unsuper-
vised or Supervised Embeddings (MUSEs) [1]. MUSEs are generated
via a method for aligning in a common vector space unsupervised
(monolingual) word embeddings. The alignment is obtained via a
linear mapping (i.e., a rotation matrix)W learned by an adversar-
ial training process in which a generator (in charge of mapping
the source embeddings onto the target space) is trained to fool
a discriminator from distinguishing the language of provenance
of the embeddings, that is, from discerning if the embeddings it
receives as input originate from the target language or are instead
the product of a transformation of embeddings originated from
the source language. MappingW is then further refined using Pro-
crustes alignment. The name “Unsupervised or Supervised" refers
to the fact that the method can operate with or without a dictionary
of parallel seed words.

We used the MUSEs that the authors of [1] make publicly avail-
able2, and that consist of 300-dimensional multilingual word embed-
dings trained on Wikipedia using fastText. The embeddings have
been aligned for 30 languages with the aid of a bilingual dictionary.

The view generator for MUSEs is similar to that for WCEs, with
the sole exception that fitting the generator (Line 5) comes down
to just allocating in memory the pre-trained MUSE matrices Mi
for each language λi involved; the projection of training and test
documents is as before, and is computed as Xi ·Mi .

2.2.3 Normalization. We have found that applying some routine
normalization techniques consistently increases the performance
of gFun. This normalization consists of imposing unit L2-norm

2https://github.com/facebookresearch/MUSE

Table 1: Characteristics of the datasets used in [3] and in
this paper; |L|, |Y|, |Tr|, and |Te| indicate the number of lan-
guages, classes, training documents, and test document used
in each of the 10 runs; CDOC indicates the average number
of classes per document, which is the same for all 10 runs.
Sets L and Y are the same for all runs, while sets Tr and Te
are different for each of the 10 runs.

|L| |Y| |Tr| |Te| CDOC
RCV1/RCV2 9 73 9,000 8,794 3.21
JRC-Acquis 11 300 12,687 46,662 3.31

to the vectors computed by the view generators, removing the
first principal component of the document embeddings obtained
via WCEs or MUSEs, and standardizing the columns of the shared
space before passing the vectors to the metaclassifier.3

The intuition behind normalization, when dealing with hetero-
geneous representations, is straightforward, and is that of allowing
all sources of information to equally contribute to the classification
process. What instead might come as a surprise is the fact that
normalization helps improve gFun even when relying exclusively
on the class-class correlations (i.e., as Fun does [3]), and that this
improvement is statistically significant. We quantify this variation
in performance in the experiments of Section 3.

3 EXPERIMENTS
In order to maximize comparability with previous results we adopt
an experimental setup identical to the one used in [3], which we
briefly sketch here.

Datasets. The first of our two datasets is RCV1/RCV2, a compara-
ble corpus of news stories published by Reuters, while the second
is JRC-Acquis, a parallel corpus of legislative texts published by the
European Union. We only give some summary characteristics of
these datasets in Table 1, and refer the reader to [3] for more details.
For both datasets, both the training set and the test set that [3] uses
are samples from the original RCV1/RCV2 and JRC-Acquis datasets,
and results reported in [3] are averages across 10 runs in which the
original datasets are resampled each time;4 we do the same here.

Evaluation measures. We evaluate classification accuracy via mi-
croaveraged F1 and macroaveraged F1 (indicated as F µ1 and FM1 ,
resp.). We also test the statistical significance of differences in per-
formance via paired sample, two-tailed t-tests at the α = 0.05 and
α = 0.001 confidence levels.

Learners. We use the same learner as in [3], i.e., Support Vector
Machines (SVMs), as implemented in the scikit-learn package.5
For the 2nd-tier classifier of gFun, and for all the baseline methods,
we optimize theC parameter, that trades off between training error
and margin, testing all values of C = 10i for i ∈ {−1, ..., 4} via k-
fold cross-validation. We use Platt calibration in order to calibrate
the 1st-tier classifiers. We employ the linear kernel for the 1st-tier
classifiers and the RBF kernel for the 2nd-tier classifier.
3Standardizing (a.k.a. “z-scoring”, or “z-transforming”) consists of having a random
variable x , with mean µ and standard deviation σ , translated and scaled as z = x−µ

σ ,
so that the new random variable z has zero mean and unit variance. The statistics µ
and σ are unknown, and are thus estimated on the training set.
4The 10 samples used for each dataset have been made available by the authors of [3]
at http://hlt.isti.cnr.it/funnelling/
5https://scikit-learn.org/stable/index.html
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Table 2: CLC results; each cell indicates the mean value and the standard deviation across the 10 runs. Boldface indicates the
best method. Superscripts † and †† denote the method (if any) whose score is not statistically significantly different from the
best one; symbol † indicates 0.001 < p-value< 0.05 while symbol †† indicates 0.05 ≤ p-value.

Naïve LRI [5] CLESA [7] KCCA [9] DCI [4] Fun [3] gFun(X) gFun(XM) gFun(XW) gFun(XMW)

F
µ
1

RCV1/RCV2 .776 ± .052 .771 ± .050 .714 ± .061 .616 ± .065 .770 ± .052 .802 ± .041 .798 ± .041 .810 ± .039 .798 ± .042 .809 ± .039††
JRC-Acquis .559 ± .012 .594 ± .016 .557 ± .024 .357 ± .023 .510 ± .014 .587 ± .009 .587 ± .010 .601 ± .010 .601 ± .009 .605 ± .009

FM1
RCV1/RCV2 .467 ± .083 .490 ± .077 .471 ± .074 .385 ± .079 .485 ± .070 .534 ± .066 .547 ± .065 .552 ± .063†† .545 ± .064†† .554 ± .064
JRC-Acquis .340 ± .017 .411 ± .027 .379 ± .034 .206 ± .018 .317 ± .012 .399 ± .013 .432 ± .015 .431 ± .016 .438 ± .012†† .438 ± .013††

Baselines. As the baselines against which to compare gFun we
use the naïve monolingual baseline (hereafter indicated as Naïve),
Funnelling (Fun), plus the four best baselines of [3], namely, Light-
weight Random Indexing (LRI) [5], Cross-Lingual Explicit Semantic
Analysis (CLESA) [7], Kernel Canonical Correlation Analysis (KCCA)
[9], and Distributional Correspondence Indexing (DCI) [4]. For all
systems but gFun, the results we report are excerpted from [3], so
we refer to that paper for the detailed setups of these baselines.

Concerning all of the above settings, we stress that they are the
settings used in [3], and we adopt them for reasons of comparability.

3.1 Results
Table 2 lists the results obtained via the different methods. For dif-
ferent variants of gFun we indicate in parentheses the document
representations that the variant uses, with the vectors of calibrated
posterior probabilities denoted by X , and with document embed-
dings obtained via MUSEs and WCEs denoted byM andW , resp.

gFun(X), the variant that uses the same document representation
as Fun, outperforms Fun, which indicates that the normalization
steps of Section 2.2.3 are beneficial. The results of gFun(XM) and
gFun(XW) show that theM andW representations contribute dif-
ferently, depending on the nature of the dataset: on RCV1/RCV2,
addingM delivers better results than addingW , whileW is more
useful than M on JRC-Acquis. This can be ascribed to the higher
number of classes of JRC-Acquis (300) with respect to RCV1/RCV2
(73): the 300 classes of JRC-Acquis enable WCEs (that encode word-
class correlations) to bring in a higher amount of information,
thus making WCEs more discriminative for JRC-Acquis than for
RCV1/RCV2. Using all three representations, as in gFun(XMW),
yields the best result in 3 out of 4 (measure, dataset) combinations,
and in the 4th combination yields a result not different, in a statisti-
cally significant sense, from the best one; this confirms the value
of the intuitions that underlie gFun.

4 CONCLUSIONS
In this paper we propose an enhancement of the Funnelling en-
semble learning method (Fun [3]), called Generalized Funnelling
(gFun). We do this by extending Fun’s original architecture in or-
der to allow additional sources of information to be brought to
bear on the classification process; while Fun leveraged class-class
correlations only, we have shown how gFun can also exploit word-
word correlations (for which we use MUSE embeddings [1]) and
word-class correlations (for which we use WCE embeddings [6]),
feeding all these heterogeneous representations to a metaclassifier
that, by virtue of their being aligned across languages, can exploit
them all. The extensive empirical evaluation that we have carried
out confirms that gFun achieves results superior to those obtained

by Fun and by a number of well-known baselines. Our current ef-
forts are directed towards testing methods more sophisticated than
simple concatenation for combining the three representations, and
towards recasting the framework as a deep learning architecture.
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