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ABSTRACT
In Semi-Automated Text Classification (SATC) an automatic

classifier Φ̂ labels a set of unlabelled documents D, follow-
ing which a human annotator inspects (and corrects when

appropriate) the labels attributed by Φ̂ to a subset D′ of D,
with the aim of improving the overall quality of the labelling.

An automated system can support this process by ranking
the automatically labelled documents in a way that maxi-
mizes the expected increase in effectiveness that derives from
inspecting D′. An obvious strategy is to rank D so that the
documents that Φ̂ has classified with the lowest confidence
are top-ranked. In this work we show that this strategy
is suboptimal. We develop a new utility-theoretic ranking
method based on the notion of inspection gain, defined as the
improvement in classification effectiveness that would derive
by inspecting and correcting a given automatically labelled
document. We also propose a new effectiveness measure
for SATC-oriented ranking methods, based on the expected
reduction in classification error brought about by partially
inspecting a list generated by a given ranking method. We
report the results of experiments showing that, with respect
to the baseline method above, and according to the pro-
posed measure, our ranking method can achieve substan-
tially higher expected reductions in classification error.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Infor-
mation filtering; Search process; I.2.7 [Artificial Intelli-
gence]: Natural Language Processing—Text analysis
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Text classification, supervised learning, semi-automated text
classification, cost-sensitive learning, ranking
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1. INTRODUCTION
Suppose an organization needs to classify a set D of textual
documents under classification scheme C, and suppose that
D is too large to be classified manually, so that resorting to
some form of automated text classification (TC) is the only
viable option. Suppose also that the organization has strict
accuracy standards, so that the level of effectiveness obtain-
able via state-of-the-art TC technology is not sufficient. In
this case, the most plausible strategy to follow is to classify
D by means of an automatic classifier Φ̂ (which we assume
here to be generated by training a supervised learner on a
training set Tr), and then to have a human editor inspect
the results of the automatic classification, correcting mis-
classifications where appropriate1. The human annotator
will obviously inspect only a subset D′ ⊂ D (since it would
not otherwise make sense to have an initial automated clas-
sification phase), e.g., until she is confident that the overall
level of accuracy of D is sufficient. We call this scenario
semi-automated text classification (SATC).

An automatic TC system may support this task by rank-
ing, after the classification phase has ended and before the
inspection begins, the classified documents in a such a way
that, if the human annotator inspects the documents start-
ing from the top of the ranking and working down the list,
the expected increase in classification effectiveness that de-
rives from this inspection is maximized. This paper is con-
cerned with devising good ranking strategies for this task.

One obvious strategy is to rank the documents in ascend-
ing order of the confidence scores generated by Φ̂, so that
the top-ranked documents are the ones that Φ̂ has classi-
fied with the lowest confidence2. The rationale is that an
increase in effectiveness can derive only by inspecting mis-
classified documents, and that a good ranking method is
simply the one that top-ranks the documents with the high-
est probability of misclassification, which (in the absence of
other information) we may take to be the documents which

Φ̂ has classified with the lowest confidence.
In this work we show that this strategy is, in general,

suboptimal. Simply stated, the reason is that, when we deal
with imbalanced TC problems (as most TC problems indeed

1In the rest of this paper we will simply write “inspect” to
actually mean “inspect and correct where appropriate”.
2We call this strategy “obvious” because of the evident sim-
ilarities between SATC and active learning (see Section 6),
where this strategy is an often-used baseline. However, to
the best of our knowledge, the application of this ranking
method (or of any other ranking method, for that matter)
to SATC has never been discussed in the literature.
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are) and, as a consequence, choose an evaluation measure –
such as F1 – that caters for this imbalance, the improvements
in effectiveness that derive from correcting a false positive
or a false negative may not be the same.

The contributions of this paper are the following. First,
we develop a new utility-theoretic ranking method for SATC
based on the notion of inspection gain, i.e., the improvement
in effectiveness that would derive by correcting a given type
of mistake (i.e., false positive or false negative). Second,
we propose a new evaluation measure for SATC, and use
it to evaluate our experiments on a standard dataset. The
results show that, with respect to the confidence-based base-
line method above, our ranking method is substantially more
effective.

The rest of the paper is organized as follows. Section
2 sets out preliminary definitions and notation. Section 3
describes our utility-theoretic strategy for ranking the auto-
matically labelled documents, while Section 4 describes the
effectiveness measure we propose for this task. Section 5
reports the results of our experiments in which we compare
the different ranking strategies by simulating the work of a
human annotator that inspects variable portions of the clas-
sified test set. Section 6 reviews related work, while Section
7 concludes by charting avenues for future research.

2. PRELIMINARIES
This paper focuses on semi-automated (multi-class) multi-
label TC. Given a set of textual documents D and a pre-
defined set of classes C = {c1, . . . , cm}, multi-label TC is
usually defined as the task of estimating an unknown tar-
get function Φ : D × C → {−1,+1}, that describes how
documents ought to be classified, by means of a function
Φ̂ : D × C → {−1,+1} called the classifier3. Here, +1 and
−1 represent membership and non-membership of the docu-
ment in the class. Each document may thus belong to zero,
one, or several classes at the same time. Multi-label TC is
usually accomplished by generating m independent binary
classifiers Φ̂j , one for each cj ∈ C, each entrusted with de-
ciding whether a document belongs or not to a class cj .

In this paper we will restrict our attention to classifiers
Φ̂j that, aside from taking a binary decision Dij ∈ {−1,+1}
on a given document di, also return a confidence estimate
Cij , i.e., a numerical value representing the strength of their
belief in the fact that Dij is correct (the higher the value,
the higher the confidence). We formalize this by taking a

binary classifier to be a function Φ̂j : D → (−∞,+∞) in

which the sign of the returned value Dij ≡ sgn(Φ̂j(di)) ∈
{−1,+1} indicates the binary decision of the classifier, and

the absolute value Cij ≡ |Φ̂j(di)| represents its confidence
in the decision.

For the purposes of this paper we also assume that

F1(Φ̂j(Te)) = 2TPj/(2TPj + FPj + FNj) (1)

(the well-known harmonic mean of precision and recall) is

the chosen evaluation measure, where Φ̂j(Te) indicates the

result of applying Φ̂j to the test set Te and TPj , FPj , FNj ,
and TNj indicate the numbers of true positives, false pos-
itives, false negatives, and true negatives in Te. Note that
F1 is undefined when TPj = FPj = FNj = 0; in this case

3Consistently with most mathematical literature we use the
caret symbol (ˆ) to indicate estimation.

we take F1(Φ̂j(Te)) = 1, since Φ̂j has correctly classified all
documents as negative examples.

We also use TP (ij) as a shorthand to indicate that Φ̂j(di)
is a true positive, and use FP (ij), FN(ij), and TN(ij)
with analogous meanings. In this paper the set of unlabelled
documents that the classifier must automatically label (and
rank) in the “operational” phase will be represented by the
test set Te.

3. A RANKING METHOD FOR SATC BASED
ON UTILITY THEORY

3.1 Ranking by utility
For the moment being, let us concentrate on the binary case,
i.e., let us assume there is a single class cj that needs to be
separated from its complement cj . The policy we propose

for ranking the automatically labelled documents in Φ̂j(Te)
makes use of a function Uj(di) that estimates the utility, for

the aims of increasing F1(Φ̂j(Te)), of manually inspecting

the label Dij attributed to di by Φ̂j .
Given a set Ω of mutually disjoint events, a utility function

is defined as a sum
∑
ω∈Ω P (ω)G(ω), where P (ω) represents

the probability of occurrence of event ω and G(ω) represents
the gain obtained if event ω indeed occurs.

Upon submitting document di to classifier Φ̂j , a positive
or a negative decision can be returned. If a positive deci-
sion is returned (i.e., Dij = +1) then the mutually disjoint
events TP (ij) and FP (ij) can occur, while if this decision is
negative (i.e., Dij = −1) then the mutually disjoint events
FN(ij) and TN(ij) can occur. We thus naturally define the
two utility functions

U+
j (di) = P (TP (ij)|Dij = +1) ·G(TP (ij))+

+P (FP (ij)|Dij = +1) ·G(FP (ij))

U−j (di) = P (FN(ij)|Dij = −1) ·G(FN(ij))+
+P (TN(ij)|Dij = −1) ·G(TN(ij))

(2)

with U+
j (di) addressing the case of a positive decision and

U−j (di) the case of a negative decision. We also define

Uj(di) =

{
U+
j (di) if Dij = +1

U−j (di) if Dij = −1
(3)

as a function embracing both positive and negative decisions.

3.2 Inspection gains
We equate G(FP (ij)) in Equations 2 with the average in-

crease in F1(Φ̂j(Te)) that would derive by manually inspect-

ing the label attributed by Φ̂j to a document in FPj . We
call this the inspection gain of a member of FPj . From
now on we will write G(FPj) instead of G(FP (ij)) so as to
reflect the fact that the inspection value is the same for all
members of FPj . Analogous arguments apply to G(TP (ij)),
G(FN(ij)), and G(TN(ij)).

Quite evidently, G(TPj) = G(TNj) = 0, since when the

human annotator inspects the label attributed to di by Φ̂j
and finds out it is correct, she will not modify it, and the
value of F1(Φ̂j(Te)) will thus remain unchanged. This means
that Equations 2 simplify to

U+
j (di) = P (FP (ij)|Dij = +1) ·G(FPj)

U−j (di) = P (FN(ij)|Dij = −1) ·G(FNj)
(4)
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G(FPj) (resp., G(FNj)) evaluates instead to the average in-

crease in F1(Φ̂j(Te)) obtained by correcting a false positive
(resp., a false negative). It is easy to see that, in general,
G(FPj) 6= G(FNj). In fact, if a false positive is corrected,
the increase in F1 is the one deriving from removing a false
positive and adding a true negative, i.e.,

G(FPj) =
1

FPj
(FFP1 (Φ̂j)− F1(Φ̂j(Te)))

=
1

FPj
(

2TPj
2TPj + FNj

(5)

− 2TPj
2TPj + FPj + FNj

)

where by FFP1 (Φ̂j) we indicate the value of F1 that would

derive by correcting all false positives of Φ̂j(Te), i.e., turn-
ing them into true negatives. Conversely, if a false negative
is corrected, the increase in F1 is the one deriving from re-
moving a false negative and adding a true positive, i.e.,

G(FNj) =
1

FNj
(FFN1 (Φ̂j)− F1(Φ̂j(Te)))

=
1

FNj
(

2(TPj + FNj)

2(TPj + FNj) + FPj
(6)

− 2TPj
2TPj + FPj + FNj

)

where by FFN1 (Φ̂j) we indicate the value of F1 that would

derive by turning all the false negatives of Φ̂j(Te) into true
positives.

3.3 Estimating the probabilities
We derive the probabilities P (·) in Equations 4 by assum-

ing that the confidence scores Cij generated by Φ̂j can be
trusted (i.e., that the higher Cij , the higher the probability
that Dij is correct), and by applying to Cij a generalized
logistic function f(z) = eσz/(eσz + 1). This results in

P (FP (ij)|Dij = +1) = 1− eσCij

eσCij + 1

P (FN(ij)|Dij = −1) = 1− eσCij

eσCij + 1

(7)

The generalized logistic function has the effect of monotoni-
cally converting scores ranging on (−∞,+∞) into real values
in the [0.0,1.0] range. When Cij = 0 (this happens when

Φ̂j has no confidence at all in its own decision Dij), then
P (TP (ij)|Dij = +1) = P (FP (ij)|Dij = +1) = 0.5 and
P (FN(ij)|Dij = −1) = P (TN(ij)|Dij = −1) = 0.5, i.e.,
the probability of correct classification and the probability
of misclassification are identical. Conversely, we have

lim
Cij→+∞

P (FP (ij)|Dij = +1) = 0

lim
Cij→+∞

P (FN(ij)|Dij = −1) = 0

This means that, when Φ̂j has a very high confidence in its
own decision Dij , the probability that Dij is wrong is taken
to be very low.

The reason why we use a generalized version of the logistic
function instead of the standard version (which corresponds
to the case σ = 1) is that using this latter within Equations
7 would give rise to a very high number of zero probabilities

of misclassification, since the standard logistic function con-
verts every positive number above a certain threshold (≈ 36)
to a number that standard implementations round to 1 even
by working in double precision. By tuning the σ parameter
(the growth rate) we can tune the speed at which the right-
hand side of the sigmoid asymptotically approaches 1, and
we can thus tune how evenly Equations 7 distribute the con-
fidence values across the [0.0,0.5] interval. How we optimize
the σ parameter is discussed in Section 5.1.

3.4 Smoothing contingency cell estimates for
computing G(FPj) and G(FNj)

One problem that needs to be tackled in order to compute
G(FPj) andG(FNj) is that the contingency cell counts TPj ,
FPj , and FNj are not known, and thus need to be esti-
mated4. In order to estimate αj ∈ {TPj , FPj , FNj} we
make the assumption that the training set and the test set
are independent and identically distributed. We then per-
form a k-fold cross-validation on the training set: if by TPTrj
we denote the number of true positives for class cj result-
ing from the k-fold cross-validation on Tr, the maximum-

likelihood estimate of TPj is ˆTP
ML

j = TPTrj · |Te|/|Tr|; the

same holds for F̂P
ML

j and ˆFN
ML

j .
However, these maximum-likelihood cell count estimates

(noted α̂ML
j ) need to be smoothed, so as to avoid zero counts.

In fact, if ˆTP
ML

j = 0, it would derive from Equation 5 that
there is nothing to be gained by correcting a false positive,

which is counterintuitive. Similarly, if F̂P
ML

j = 0, the very

notion of FFP1 (Φ̂j) would be meaningless, since it does not
make sense to speak of“removing a false positive”when there

are no false positives; the same goes for ˆFN
ML

j .

A second reason why the α̂ML
j need to be smoothed is

that, when |Te|/|Tr| < 1, they may give rise to negative
values for G(FPj) and G(FNj), which is obviously counter-
intuitive. To see this, note that the α̂ML

j may not be integers
(which is not bad per se, since the notions of precision, re-
call, and their harmonic mean intuitively make sense also
when we allow the contingency cell counts to be nonnega-
tive reals instead of the usual integers), and may be smaller
than 1 (this happens when |Te|/|Tr| < 1). This latter fact is
problematic, both in theory (since it is meaningless to speak
of, say, removing a false positive from Te when “there are
less than 1 false positives in Te”) and in practice (since it is
easy to verify that negative values for G(FPj) and G(FNj)
may derive).

Smoothing has extensively been studied in language mod-
elling for speech processing [3] and for ad hoc search in IR
[24]. However, the present context is slightly different, in
that we need to smooth contingency tables, and not (as in
the cases above) language models. In particular, while the
α̂ML
j are the obvious counterpart of the document model re-

sulting from maximum-likelihood estimation, there is no ob-
vious counterpart to the “collection model”, thus making the
use of, e.g., Jelinek-Mercer smoothing problematic. A fur-
ther difference is that we here require the smoothed counts
not only to be nonzero, but also to be ≥ 1 (a requirement
not to be found in language modelling).

Smoothing has also been studied specifically for the pur-

4We will disregard the estimation of TNj since it is un-

necessary for our purposes, given that F1(Φ̂j(Te)) does not
depend on TNj .
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pose of smoothing contingency cell estimates [1, 21]. How-
ever, these methods are inapplicable to our case, since they
were originally conceived for contingency tables character-
ized by a small (i.e., ≤ 1) ratio between the number of ob-
servations (which in our case is |Te|) and the number of cells
(which in our case is 4); our case is quite the opposite. Ad-
ditionally, these smoothing methods do not operate under
the constraint that the smoothed counts should all be ≥ 1,
which is a hard constraint for us.

For all these reasons, rather than adopting more sophisti-
cated forms of smoothing, we adopt simple additive smooth-
ing (also known as Laplace smoothing), a special case of
Bayesian smoothing using Dirichlet priors [24] which is ob-
tained by adding a fixed quantity to all the α̂ML

j . As a fixed
quantity we add 1, since it is the quantity that all our cell
counts need to be greater or equal to for Equations 5 and 6 to
make sense. We thus leave the study of more sophisticated
smoothing methods to future work.

However, it should be noted that we apply smoothing in
an “on demand” fashion, i.e., we check if the contingency
table needs smoothing at all (i.e, if any of the α̂ML

j is < 1)
and we smooth it only if this is the case.

3.5 Ranking by total utility
Our function Uj(di) of Section 3.1 is thus obtained by plug-
ging Equations 5 and 6 into Equations 4.

At this point, it would seem sensible to propose ranking,
for each cj ∈ C, all the automatically labelled documents
in Te in decreasing order of their Uj(di) value. Unfortu-
nately, this would generate |C| different rankings, and in an
operational context it seems implausible to ask a human an-
notator to scan |C| different rankings of the same documents
(this might mean reading the same document |C| times in
order to validate its labels). As suggested in [6] for active
learning, it seems instead more plausible to generate a single
ranking, according to a score U(di) that is a function of the
|C| different Uj(di) scores. In such a way, the human anno-
tator will scan this single ranking from the top, validating
all the |C| different labels for di before moving on to another
document. As the criterion for generating the overall utility
score U(di) we use total utility, corresponding to the simple
sum

U(di) =
∑
cj∈C

Uj(di) (8)

Our final ranking is thus generated by sorting the test doc-
uments in descending order of their U(di) score.

From the standpoint of computational cost, this technique
is O(|Te| · (|C|+ log |Te|)), since the cost of sorting the test
documents by their U(·) score is O(|Te| log |Te|), and the
cost of computing the U(·) score for |Te| documents and |C|
classes is O(|Te| · |C|).

4. EXPECTED NORMALIZED ERROR RE-
DUCTION

No measures are known from literature for evaluating the
effectiveness of a SATC-oriented ranking method ρ. We here
propose such a measure, which we call expected normalized
error reduction (noted ENERρ).

4.1 Error reduction at rank
Let us first introduce the notion of residual error at rank n
(noted Eρ(n), which we assume to range on [0,1]), defined

as the error that is still present in the document set Te
after the human annotator has inspected the documents at
the first n rank positions in the ranking generated by ρ. The
value of Eρ(0) is the initial error generated by the automated
classifier, and the value of Eρ(|Te|) is 0. We will hereafter
call n the inspection length.

We next define error reduction at rank n to be

ERρ(n) =
Eρ(0)− Eρ(n)

Eρ(0)
(9)

i.e., a value in [0,1] that indicates the error reduction ob-
tained by a human annotator who has inspected the docu-
ments at the first n rank positions in the ranking generated
by ρ; 0 stands for no reduction, 1 stands for total elimination
of error.

Example plots of the ERρ(n) measure are displayed in
Figures 1 and 2, where different curves represent differ-
ent ranking methods ρ′, ρ′′, ..., and where, for better con-
venience, the x axis indicates the fraction n/|Te| of the test
set that has been inspected rather than the number n of
inspected documents. By definition all curves start at the
origin of the axes and end at the upper right corner of the
graph. Higher curves represent better strategies, since they
indicate that a higher error reduction is achieved for the
same amount of manual inspecting effort.

The reason why we focus on error reduction, instead of the
complementary concept of “increase in accuracy”, is that er-
ror reduction has always the same upper bound (i.e., 100%
reduction), independently of the initial error. In contrast,
the increase in accuracy that derives from inspecting the
documents does not always have the same upper bound. For
instance, if the initial accuracy is 0.5 (with accuracy values
ranging on [0,1]), then an increase in accuracy of 100% is in-
deed possible, while this increase is not possible if the initial
accuracy is 0.9. This makes the notion of increase in ac-
curacy problematic, since different datasets and/or different
classifiers give rise to different initial levels of accuracy. So,
using error reduction instead of increase in accuracy “nor-
malizes” our curves, i.e., allows a meaningful comparison
of curves obtained on different datasets and after different
classifiers have been used.

Since (as stated in Section 2) we use F1 for measuring ef-
fectiveness, as a measure of classification error we use E1 ≡
(1 − F1). In order to measure the overall effectiveness of
a ranking method across the entire set C of categories, we
compute two versions of ERρ(n), one based on microaver-
aged E1 (denoted by Eµ1 ) and one based on macroaveraged
E1 (EM1 ). Eµ1 is obtained by (i) computing the class-specific
values TPj , FPj and FNj , (ii) obtaining TP as the sum of
the TPj ’s (same for FP and FN), and then (iii) applying
the formula E1 = 1 − 2TP

2TP+FP+FN
= FP+FN

2TP+FP+FN
. EM1

is instead obtained by computing the class-specific E1 val-
ues and averaging them across the cj ’s. The two versions of
ERρ(n) will be indicated as ERµρ (n) and ERMρ (n).

4.2 Normalized error reduction at rank ...
One problem with ERρ(n), though, is that the expected
ERρ(n) value of the random ranker is fairly high5, since it

5That the expected ERρ(n) value of the random ranker is
n
|Te| is something that we have not tried to formally prove.

However, that this holds is supported by intuition and is
unequivocally shown by Monte Carlo experiments we have
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amounts (for both ERµρ (n) and ERMρ (n)) to n
|Te| . The dif-

ference between the ERρ(n) value of a genuinely engineered
ranking method ρ and the expected ERρ(n) value of the
random ranker is particularly small for high values of n, and
is null for n = |Te|. This means that it makes sense to fac-
tor out the random factor from ERρ(n). This leads us to
define the normalized error reduction of ranking method ρ
as NERρ(n) = ERρ(n)− n

|Te| , with the two versions noted

as NERµρ (n) and NERMρ (n).

4.3 ... and its expected value
However, NERρ(n) is still unsatisfactory as a measure, since
it depends on a specific value of n (which is undesirable, since
our human annotator may decide to work down the ranked
list as far as she deems suitable). Following [18] we assume
that the human annotator stops inspecting the ranked list at
exactly rank n with probability Ps(n). We can then define
the expected normalized error reduction of ranking method
ρ on a given document set Te as

ENERρ =

|Te|∑
n=1

Ps(n)NERρ(n) (10)

with the two versions indicated as ENERµρ and ENERMρ .
Different probability distributions Ps(n) can be assumed.

In order to base the definition of such a distribution on a
plausible model of user behaviour, we here make the as-
sumption (along with [15]) that a human annotator, after
inspecting a document, goes on to inspect the next docu-
ment with probability p (also called persistence in [15]) or
stops inspecting with probability (1− p), so that

Ps(n) =

{
pn−1(1− p) if n ∈ {1, . . . , |Te| − 1}
pn−1 if n = |Te| (11)

It can be shown that, for a sufficiently large value of |Te|, the
expected number of documents that the human annotator
will inspect as a function of p asymptotically tends to 1

1−p .

The value ξ = 1
|Te|(1−p) thus denotes the expected fraction

of the test set that the human annotator will inspect as a
function of p.

Using this distribution entails the need of determining a
realistic value for p. A value p = 0 corresponds to a situation
in which the human annotator only inspects the top-ranked
document, while p = 1 indicates a human annotator who
inspects each document in the ranked list. Unlike in ad
hoc search, we think that in a SATC context it would be
unrealistic to take a value for p as given irrespective of the
size of Te. In fact, given a desired level of error reduction,
when |Te| is large the human annotators need to be more
persistent (i.e., characterized by higher p) than when |Te| is
small.

Therefore, instead of assuming a predetermined value of p
we assume a predetermined value of ξ, and derive the value
of p from the equation ξ = 1

|Te|(1−p) . For example, in a

certain application we might assume ξ = .2 (i.e., that the
average human annotator inspects 20% of the test set). In
this case, if |Te| = 1, 000, then p = 1− 1

.2·1000
= .9950, while

if |Te| = 10, 000, then p = 1− 1
.2·10000

= .9995. In the exper-
iments of Section 5 we will test all values of p corresponding
to values of ξ in {.05, .10, .20}.
run on our datasets; see Figures 1 and 2 for a graphical
representation.

Note that the values of ENERρ are bounded above by 1,
but a value of 1 is not attainable. In fact, even the “perfect
ranker” (i.e., the ranking method that top-ranks all mis-
classified documents, noted Perf ) cannot attain an ENERρ
value of 1, since in order to achieve total error elimination
all the misclassified documents need to be inspected anyway,
which means that the only condition in which ENERPerf
might equal 1 is when there is just 1 misclassified docu-
ment. We do not try to normalize ENERρ by the value of
ENERPerf since ENERPerf cannot be characterized ana-
lytically, and depends on the actual labels in the test set.

5. EXPERIMENTS

5.1 Experimental protocol
Let Ω be a dataset partitioned into a training set Tr and a
test set Te. In each experiment reported in this paper we
adopt the following experimental protocol:

1. For each cj ∈ C

(a) Train classifier Φ̂j on Tr and classify Te by means

of Φ̂j ;

(b) Run k-fold cross-validation on Tr, thereby

i. computing TPTrj , FPTrj , and FNTr
j ;

ii. optimizing the σ parameter of Equations 7;

2. For every ranking policy ρ tested

(a) Rank Te according to ρ;

(b) Scan the ranked list from the top, correcting pos-
sible misclassifications and computing the result-
ing values of ENERµρ and ENERMρ for different
values of ξ.

For Step 1b we have used k = 10.
The optimization method we use for Step 1(b)ii consists

in picking the value of σ that minimizes the average (across
the cj ∈ C) absolute value of the difference between PosTrj ,
the number of positive training examples of class cj , and
E[PosTrj ], the expected number of such examples as resulting
from the probabilities of membership in cj computed in the
k-fold cross-validation. That is, we pool together all the
training documents classified in the k-fold cross-validation,
and then we pick

arg min
σ

1

|C|
∑
cj∈C

|PosTrj − E[PosTrj ]| =

arg min
σ

1

|C|
∑
cj∈C

|PosTrj −
∑
di∈Tr

eσΦ̂j(di)

eσΦ̂j(di) + 1
|

This is a much faster parameter optimization method than
the traditional method of picking the value that has per-
formed best in k-fold cross-validation since, unlike the lat-
ter, it does not depend on the ranking method ρ. Therefore,
this method spares us from the need of ranking the training
set several times, i.e., for each combination of a tested value
of σ and a ranking method ρ.

As the learner for generating our classifiers Φ̂j we use
a boosting-based learner called MP-Boost [5]. Boosting-
based methods have showed very good performance across
many learning tasks and, at the same time, have strong jus-
tifications from computational learning theory. MP-Boost
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Figure 1: Error reduction as a function of the fraction of the test set that the human annotator has inspected.
The dataset is the Reuters-21578 collection. Error reduction is measured as ERµρ (left) and ERMρ (right). The
Random curve indicates the results of our estimation of the expected performance of the random ranker via
a Monte Carlo method with 50 random trials. Higher curves are better.

is a variant of AdaBoost.MH [19] optimized for multi-label
settings, which has been shown in [5] to obtain considerable
effectiveness improvements with respect to AdaBoost.MH.
MP-Boost generates a classifier Φ̂j where sgn(Φ̂j(di)) rep-
resents the binary decision as to whether di belongs to cj
and |Φ̂j(di)| represents the confidence in this decision. In
all our experiments we set the S parameter of MP-Boost
(representing the number of boosting iterations) to 1000.

As dataset we have used the Reuters-21578 corpus. It
consists of a set of 12,902 news stories, partitioned (accord-
ing to the “ModApté” split we have adopted) into a training
set of 9,603 documents and a test set of 3,299 documents.
The documents are labelled by 118 categories; the average
number of categories per document is 1.08, ranging from a
minimum of 0 to a maximum of 16; the number of posi-
tive examples per class ranges from a minimum of 1 to a
maximum of 3964. In our experiments we have restricted
our attention to the 115 categories with at least one positive
training example. This dataset is publicly available6 and
is probably the most widely used benchmark in text clas-
sification research, which allows other researchers to easily
replicate the results of our experiments.

In all the experiments discussed in this paper stop words
have been removed, punctuation has been removed, all let-
ters have been converted to lowercase, numbers have been
removed, and stemming has been performed by means of
Porter’s stemmer. Word stems are thus our indexing units.
Since MP-Boost requires binary input, only their presence/
absence in the document is recorded, and no weighting is
performed.

6http://www.daviddlewis.com/resources/testcollections/
~reuters21578/

5.2 Results and discussion

5.2.1 Lower bounds and upper bounds
As the baseline for our experiments we use the confidence-
based strategy discussed in Section 1, which corresponds to
using our utility-theoretic method with both G(FP ) and
G(FN) set to 1. As discussed in Footnote 2, while this
strategy has not explicitly been proposed before, it seems a
reasonable, common-sense strategy anyway.

While the confidence-based method will act as our lower
bound, we have also run “oracle-based” methods aimed at
identifying upper bounds for the effectiveness of our utility-
theoretic method, i.e., at assessing the effectiveness of “ide-
alized” (albeit non-realistic) systems at our task.

The first such method (dubbed Oracle1) consists of “peek-
ing” at the actual values of TPj , FPj , and FNj in Te, us-
ing them in the computation of G(FPj) and G(FNj), and
running our utility-theoretic method as usual. Oracle1 thus
indicates how our method would behave were it able to“per-
fectly”estimate TPj , FPj , and FNj . The difference in effec-
tiveness between Oracle1 and our method will thus be due
to (i) the performance of the smoothing method adopted,
and (ii) possible differences between the distribution of the
documents across the contingency table cells in the training
and in the test set.

In the second such method (Oracle2) we instead peek at
the true labels of the documents in Te, which means that
we will be able to (a) use the actual values of TPj , FPj ,
and FNj in the computation of G(FPj) and G(FNj) (as
in Oracle1), and (b) replace the probabilities in Equations 4
with the true binary values (i.e., replacing P (x) with 1 if x is
true and 0 if x is false), after which we run our utility-based
ranking method as usual. The difference in effectiveness
between Oracle2 and our method will be due to factors (i)
and (ii) already mentioned for Oracle1 and to our method’s
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Figure 2: Results obtained by (a) splitting the Reuters-21578 test set into 10 random, equally-sized parts,
(b) running the analogous experiments of Figure 1 independently on each part, and (c) averaging the results
across the 10 parts.

(obvious) inability to perfectly predict whether a document
was classified correctly or not.

5.2.2 Large test sets
Figure 1 illustrates the results of our experiments on the
Reuters-21578 dataset in terms of ERµρ (n) and ERMρ (n);
the results of the same experiments in terms of ENERµρ
and ENERMρ as a function of the chosen value of ξ are
instead reported in Table 1. The initial error generated by
the automatic classifier is Eµ1 = .152 and EM1 = .383. The
optimal value of σ returned by the k-fold cross-validation
phase is .420.

The first insight we can draw from these results is that our
utility-theoretic method outperforms the baseline in a very
substantial way. For instance, for ξ = .10 (corresponding to
p = .996) it obtains a relative improvement over the baseline
of +30% in terms of ENERµρ and of +119% in terms of

ENERMρ . Improvements obtained for the two other tested
values of ξ are qualitatively similar.

A second insight is that, surprisingly, our method hardly
differs in terms of performance from Oracle1. The two curves
can be barely distinguished in Figure 1, and in terms of
ENERρ Oracle1 is even outperformed by our utility-theoretic
method, albeit by a narrow margin (.221 vs. .217 for ENERµρ
and .233 vs. .224 for ENERMρ , both for ξ = .10; the other
tested values for ξ give similar results). This shows that (at
least judging from this experiment) Laplace smoothing is
nearly optimal, and there is likely not much we can gain from
applying alternative, more sophisticated smoothing meth-
ods. This is sharply different from what happens in language
modelling, where Laplace smoothing has been shown to be
an underperformer [9]. The fact that our method slightly
(and strangely) outperforms Oracle1 is probably due to ac-
cidental, “serendipitous” interactions between the probabil-
ity estimation component (Equation 7) and the contingency
cell estimation component of Section 3.4.

Note that in Figure 1 the ERµρ curves (left) are smoother

than the ERMρ curves (right). This is due to the fact that
Eµ1 is evaluated on a single, global contingency table, so that
correcting an individual document always has a small effect
on Eµ1 . By contrast, even correcting a single document may
have a major effect on a class-specific value of E1 (espe-
cially if the class is infrequent), and this may bring about a
relatively major effect on EM1 too.

5.2.3 Small (and tiny) test sets
We have run a second batch of experiments in which we
randomly split the Reuters-21578 test set in 10 equally-
sized parts (about 330 documents each), we run each ranking
method on each such part individually, and we average the
results across the 10 parts. We call this scenario Reuters-
21578/10. The relative results in terms of ERµρ (n) and

ERMρ (n) are shown in Figure 2, while the results of the

same experiments in terms of ENERµρ and ENERMρ are
reported in Table 2.

The rationale of these experiments is checking how the
methods fare when ranking test sets much smaller that the
Reuters-21578 test set. This is more challenging than
ranking larger sets, since in this case Laplace smoothing
(i) can seriously perturb the relative proportions among the
cell counts, which can generate poor estimates of G(FPj)
and G(FNj), and (ii) is performed for more classes, since
we smooth “on demand” only and since the likelihood that
the α̂j are smaller than 1 is higher with small test sets.

Figure 2 confirms that our utility-theoretic method sub-
stantially outperforms the baseline also in this context. Note
that the EM1 curves (left) are smoother than the analogous
curves of the full Reuters-21578. This is due to the fact
that the curves in Figure 2 result from averages across 10 dif-
ferent experiments, and the increase brought about at rank
n is actually the average of the increases brought about at
rank n in the 10 experiments.

That our utility-theoretic method substantially outper-
forms the baseline also in this experiment can be seen also
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Table 1: Results of various ranking methods on Reuters-21578 in terms of EERρ; the notation EERxρ(y) indicates
EERρ values obtained by using x as an averaging method (micro- or macro-averaging) for E1 and y as a value
for ξ. Improvements listed for the various methods are relative to the baseline.

ENERµρ (0.05) ENERµρ (0.10) ENERµρ (0.20) ENERMρ (0.05) ENERMρ (0.10) ENERMρ (0.20)

Baseline .109 .169 .224 .070 .106 .155
Utility-theoretic .145 (+32%) .221 (+30%) .285 (+27%) .162 (+133%) .233 (+119%) .298 (+92%)

Oracle1 .142 (+29%) .217 (+28%) .281 (+25%) .151 (+116%) .224 (+111%) .292 (+88%)
Oracle2 .277 (+153%) .401 (+137%) .480 (+113%) .671 (+864%) .725 (+582%) .701 (+351%)

Table 2: As in Table 1, but with Reuters-21578/10 instead of Reuters-21578.

ENERµρ (0.05) ENERµρ (0.10) ENERµρ (0.20) ENERMρ (0.05) ENERMρ (0.10) ENERMρ (0.20)

Baseline .110 .169 .222 .063 .097 .136
Utility-theoretic .141 (+27%) .212 (+25%) .272 (+22%) .150 (+138%) .210 (+116%) .257 (+88%)

Oracle1 .144 (+30%) .215 (+26%) .273 (+23%) .163 (+158%) .220 (+126%) .264 (+94%)
Oracle2 .288 (+161%) .403 (+138%) .477 (+114%) .480 (+662%) .585 (+503%) .612 (+349%)

from Table 2. For ξ = .10 (corresponding to p = .969) the
relative improvement over the baseline is +25% for ENERµρ
and +116% for ENERMρ . Similarly substantial improve-
ments are obtained for the two other values of ξ tested.

Note also that in this case our method underperforms Ora-
cle1 (.212 vs. .215 for ENERµρ , .210 vs. .220 for ENERMρ ),
and this points to a possible, small suboptimality of the
smoothing method adopted. We leave the investigation of
more sophisticated smoothing methods to a future paper.

In further experiments that we have run, we have split the
Reuters-21578 test set even further, i.e., into 100 equally-
sized parts of about 33 documents each, so as to test the
performance of Laplace smoothing methods in even more
challenging conditions. The ENERµρ and ENERMρ results
for this Reuters-21578/100 scenario are reported in Figure
3; we do not report the detailed ERµρ (n) and ERMρ (n) plots
for reasons of space. Our utility-theoretic model still out-
performs the baseline, with a relative improvement of +18%
on ENERµρ and +48% on ENERMρ with ξ = .10, corre-
sponding to p = .696; qualitatively similar improvements
are obtained with the other tested values of ξ.

However, we consider the Reuters-21578/100 scenario
less interesting than the two previously discussed ones, since
applying a ranking method to a set of 33 documents only is of
debatable utility, given that a human annotator confronted
with the task of inspecting just 33 documents can arguably
check them all without any need for ranking.

Incidentally, note that the Reuters-21578/10 and Reuters-
21578/100 experiments model an application scenario in
which a set of automatically labelled documents is split (e.g.,
to achieve faster throughput) among k human annotators,
each one entrusted with inspecting a part of the set. In this
case, each annotator is presented with a ranking of her own
document subset, and works exclusively on it.

5.2.4 A note on (micro- or macro-) averaging
It is important to note that both the baseline and our utility-
theoretic method are explicitly optimized for ENERMρ , and
not for ENERµρ . To see this, note that the U(di) func-
tion of Equation 8 is based on an unweighted sum of the
class-specific Uj(di) scores, i.e., it pays equal importance
to all classes, irrespective of frequency considerations. This
means that it is optimized for metrics that also pay equal

attention to all classes, as all macroaveraged measures such
as ENERMρ do.

By contrast, ENERµρ pays attention to classes propor-
tionally to their frequency. Therefore, a ranking method
that optimizes for ENERµρ should instead do away with
class-specific utility functions and use a utility function that
(similarly to what happens for Eµ1 ) is directly computed
on a single, global contingency table obtained by the cell-
wise sum of the class-specific contingency tables. In such a
method, G(FP ) and G(FN) would be global to C, i.e., they
would be the same for all cj ∈ C. We leave the investiga-
tion of ranking methods optimized for ENERµρ to a future
paper.

All this shows that the measure according to which both
the baseline and our utility-theoretic method should be eval-
uated is ENERMρ , and not ENERµρ , since it is ENERMρ
that these methods were designed for7. However, we have
also reported results measured according to Eµ1 for complete-
ness, and in order to show that, while our methods were not
meant for use with Eµ1 as the yardstick, they still perform
well even in this context.

It should thus come as no surprise that the improvements
displayed by our method (and the oracles) over the baseline
are always higher, or much higher, for ENERMρ than for
ENERµρ , as is apparent from all the figures and tables in
this paper.

6. RELATED WORK
Many researchers have tackled the problem of how to use
automated TC technologies in application contexts in which
the required accuracy levels are unattainable by the gener-
ated automatic classifiers.

A standard response to this problem is to adopt active
learning (AL – see e.g., [11, 22]), i.e., use algorithms that
optimize the informativeness of additional training exam-
ples provided by a human annotator. Still, providing ad-
ditional training examples, no matter how carefully chosen,
may be insufficient, since in many applicative contexts high

7The baseline we have used is, as specified in Section 5.2.1,
our utility-theoretic method with G(FPj) and G(FNj) set
to 1; it is thus also optimized for EM1 . A baseline method
optimized for Eµ1 would be the method outlined in the last
paragraph with G(FP ) and G(FN) set to 1.
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Table 3: As in Table 1, but with Reuters-21578/100 instead of Reuters-21578.

ENERµρ (0.05) ENERµρ (0.10) ENERµρ (0.20) ENERMρ (0.05) ENERMρ (0.10) ENERMρ (0.20)

Baseline .102 .158 .207 .073 .117 .158
Utility-theoretic .119 (+16%) .187 (+18%) .244 (+17%) .115 (+56%) .173 (+48%) .221 (+39%)

Oracle1 .170 (+66%) .241 (+52%) .292 (+41%) .153 (+108%) .208 (+77%) .249 (+57%)
Oracle2 .306 (+198%) .417 (+163%) .482 (+132%) .362 (+395%) .473 (+304%) .527 (+233%)

enough accuracy levels cannot be attained, irrespectively of
the quantity and quality of the available training data. Sim-
ilar considerations apply when active learning is carried out
at the term level, rather than at the document level [10, 17].

A related response to the same problem is to adopt train-
ing data cleaning (TDC – see e.g., [7, 8]), i.e., use algorithms
that optimize the human annotator’s efforts at correcting
possible labelling mistakes in the training set. Similarly to
the case of AL, in many applicative contexts high enough
accuracy levels cannot be attained even at the price of care-
fully inspecting the entire training set for labelling mistakes.

Both AL and TDC are different from the task we deal
with, since we are not concerned with improving the quality
of the training set. We are instead concerned with improving
the quality of the automatically classified test set, typically
after all attempts at injecting quality in the automatic clas-
sifier have proved insufficient; in particular, no retraining /
reclassification phase is involved in SATC.

Active learning. As remarked above, SATC certainly
bears strong relations with active learning. In both SATC
and in the selective sampling – also known as pool-based –
approach to AL [13, 14], the automatically classified objects
are ranked and the human annotator is encouraged to cor-
rect possible misclassifications by working down from the
top of the ranked list. However, as remarked above, the
goals of the two tasks are different. For instance, in ac-
tive learning we are interested in top-ranking the unlabelled
documents that, once manually labelled, would maximize
the information fed back to the learning process, while in
SATC we are interested in top-ranking the unlabelled doc-
uments that, once manually inspected, would maximize the
expected accuracy of the automatically classified document
set. As a result, the optimal ranking strategies for the two
tasks may be different too.

Semi-automated TC. While AL (and, to a much lesser
degree, TDC) have been investigated extensively in a TC
context, semi-automated TC has been completely neglected
by the research community. While a number of papers (e.g.,
[12, 20, 23]) have evoked the existence of this scenario, we are
not aware of any published papers that either discuss rank-
ing policies for supporting the human annotator’s effort, or
that attempt to quantify the effort needed for reaching a
desired level of accuracy. For instance, while discussing a
system for the automatic assignment of ICD9 classes to pa-
tients’ discharge summaries, Larkey and Croft [12] say “We
envision these classifiers being used in an interactive system
which would display the 20 or so top ranking [classes] and
their scores to an expert user. The user could choose among
these candidates (...)”, but do not present experiments that
quantify the accuracy that the inspecting activity brings
about, or methods aimed at optimizing the cost-effectiveness
of this activity.

7. CONCLUSIONS AND FUTURE WORK
We have presented a method for ranking the documents la-
belled by an automatic classifier. The documents are ranked
in such a way as to maximize the expected reduction in clas-
sification error brought about by a human annotator who
inspects a subset of the ranked list and corrects the labels
when appropriate. We have also proposed an evaluation
measure for such ranking methods, based on the notion of
expected normalized error reduction. Experiments carried
out on a standard dataset show that our method substan-
tially outperforms a state-of-the-art baseline method. To
the best of our knowledge, this is the first paper in the lit-
erature that addresses semi-automated text classification as
a task in its own right, and which presents methods explic-
itly devised for optimizing it; this is obviously the reason of
the very substantive improvements obtained by our method
with respect to the baseline.

It should be remarked that the very fact of using a util-
ity function, i.e., a function in which different events are
characterized by different gains, makes sense here since we
have adopted an evaluation function, such as F1, in which
correcting a false positive or a false negative indeed brings
about different benefits to the final effectiveness score. If
we instead adopted accuracy (i.e., the percentage of binary
classification decisions that are correct) as the evaluation
measure, utility would default to the probability of misclas-
sification and our method would coincide with the baseline,
since correcting a false positive or a false negative would
bring about the same benefit. The method we have pre-
sented is justified by the fact that F1 is the standard eval-
uation function for text classification, while accuracy is a
deprecated measure in a text classification context since it
is not robust to class imbalance. See e.g., [20, Section 7.1.2]
for a discussion of this point.

The method we have proposed is obviously valid also when
a different instantiation of the Fβ function (i.e., with β 6= 1)
is used as the evaluation function. This may be the case,
e.g., when classification is to be applied to a recall-oriented
task (such as e-discovery [16]), in which case values β > 1
are appropriate. In these cases our utility-theoretic method
can be used once the appropriate instance of Fβ is used in
Equations 5 and 6 in place of F1. The same trivially holds
for any other evaluation function, even different from Fβ
and even multivariate and non-linear, provided it can be
computed from a contingency table. We also remark that
this technique is obviously not limited to text classification,
but can be useful in any classification context in which class
imbalance [2], or cost-sensitivity in general [4], suggest using
a measure (such as Fβ) that caters for these characteristics.

Note that, by using our method, it is also easy to pro-
vide the human annotator with an estimate of how accurate
the labels of the test set are as a result of her inspecting
all the documents until rank n. In fact, if the contingency
cell estimates ˆTP j , F̂P j , and ˆFN j (see Section 3.4) are up-
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dated (adding and subtracting 1 where appropriate) after
each correction made by the human annotator, at any point
in the inspection activity these are up-to-date estimates of
how well the test set is now classified, and from these esti-
mates F1 (or other) can be computed as usual.

In the next future we plan to carry our more experiments,
using additional datasets, learners, and (when the test sets
are small) smoothing methods. We are also currently testing
an improved ranking method that we have recently designed.
Essentially, this “dynamic” method is based on the observa-
tion that inspecting a document misclassified for cj brings
about changes in at least one of TPj , FPj , and FNj (and in
G(FPj) and/or G(FNj) and Uj(·) as a consequence). This
dynamic version of our ranking strategy consists of updat-
ing (after each correction has been performed) ˆTP j , F̂P j ,

and ˆFN j by adding and subtracting 1 where appropriate,
re-estimating Gj(FP ), Gj(FN) and Uj(·), and bringing to
bear these new estimates when selecting the document that
should be presented next to the human annotator.
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