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Abstract

Some researchers have recently argued that the task of Information Retrieval (IR) may successfully be

described by means of mathematical logic; accordingly, the relevance of a given document to a given

information need should be assessed by checking the validity of the logical formula d + n, where d is

the representation of the document, n is the representation of the information need and “-+” is the

conditional connective of the logic in question. In a recent paper we have proposed Terminological

Logics (TLs) as suitable logics for modelling IR within the paradigm described above. This proposal,

however, while making a step towards adequately modelling IR in a logical way, does not account for

the fact that the relevance of a document to an information need can only be assessed up to a limited

degree of certainty. In this work, we try to overcome this limitation by introducing a model of IR based

on a Probabilistic TL, i.e. a logic allowing the expression of real-valued terms representing probability

values and possibly involving expressions of a TL. Two different types of probabilistic information,

i.e. statistical information and information about degrees of belie~ can be accounted for in this logic.

The paper presents a formal syntax and a denotational (possible-worlds) semantics for this logic, and

discusses, by means of a number of examples, its adequacy as a formal tool for describing IR.

1 Introduction

In recent years, researchers in Information Retrieval (IR) have devoted an increasing amount of work
to the search for models of IR, i.e. for theoretical descriptions of the IR process that could serve both

as specifications for building running systems, and as theoretical tools for abstractly investigating the

relative efficiency of systems built along their guidelines.

The attention of researchers seems lately to have concentrated on the so-called Logical Model, first

introduced by van Rljsbergen [11]. According to the Logical Model, IR may be seen as the task of
retrieving, in response to an information need on the part of the user, all the documents that belong to
a given document base and that make the formula d + n valid (according to the notion of validity of the

chosen logic ,C), where d and n are the representations of the document and of the information need in

the language of L, and “+” is the “conditional” connective of L.

In fact, the Logical Model does not go as far as specifying which logic has to be chosen for modelling
IR. As a consequence, the key problem of this research paradigm is the selection of an adequate logic
for this task; a number of proposals have thus recently appeared that, with varying degrees of success,
attempt to instantiate the Logical Model by means of an appropriate logic.

In a recent paper [9], we have argued that a family of logics suitable (at least, at a first approximation)
for modelling relevance of documents to information needs along the guidelines of the Logical Model is
that of Terminological Logics (TLs); we have gone further to propose one such logic (which we have

dubbed MIRTL) that we deemed particularly suited to IR purposes.

However, TLs do not deal with uncertain information and statistical information. Because of this, our

model does not make provisions for the fact that the system is not normally able to assess the relevance

of a document to an information need with certainty. Actually, van Rijsbergen stresses that, given that

the system cannot reasonably expect to determine relevance “objectively”, we should think in terms of

the the probability that the system attributes to d being relevant to n, In the logical model, IR then
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becomes the task of computing, for each document d, the real number r such that P(d + n) = r is valid,

and ranking documents in terms of the associated r.

In this paper, we attempt to solve this problem by extending TLs in a probabilistic way. Two dif-

ferent types of probabilistic information will be supported in our framework: probabilistic information

as statistical information, and probabilistic information as information on the degree of belief that the

system has in other information. Quite obviously, our framework will also allow the combination of these

two types of probabilistic information, i.e. it will allow the representation of the degree of belief that the

system has in some piece of statistical information.

One interesting result of this approach is that the resulting logic allows the expression of conditional

probabilities involving expressions of a TL; it will then be possible, as advocated by van Rljsbergen,

to model the probability of relevance of a document to an information need in terms of a conditional

probability. But the interesting facet of this is that this will be possible while staying within the confines

of classical logic 1, thus relying on a semantic apparatus that is more intuitive and less controversial than

that of the conditional logic advocated by van Kljsbergen.

The paper is structured as follows. In order to make it reasonably self-contained, in Section 2 we give

a brief introduction to TLs and to the role they play in the model introduced in [9]. In Section 3 we argue

that, for IR purposes, it would be useful to endow TLs with primitives for expressing both statistical

information and information about degrees of belief. In Section 4 we go on to specify in full formal detail

how both types of probability can actually be embedded in TLs; we do this by specifying a formal syntax

and a denotational semantics for a language that allows the expression of real-valued terms representing

probability values and possibly involving expressions of a TL. We will call the resulting logics Probabilistic

Terminological Logics (PTLs); we will also see one example of them, i.e. a probabilistic version of MIRTL,

that we will call P-MIRTL. Section 5 concludes.

2 An introduction to Terminological Logics and their use in

IR modelling

The basic claim of our previous paper [9] is that Terminological Logics:

1.

2.

3.

4.

provide a representation language rich enough to accommodate, in an intuitive “object-oriented”

syntax, complex descriptions of documents. This language is rich enough to account for the mul-

tifaceted nature of documents, i.e. for the fact that documents have a number of “orthogonal”

properties (such as content, structure, graphical characteristics, etc.) that users might want to use

in referring to them within queries;

can accommodate, in the same representation language, and with the same intuitive “object-oriented”

syntax, descriptions of user information needs complex enough to address the above mentioned mul-

tifaceted nature of documents;

can accommodate, in the same representation language, and with the same intuitive “object-oriented”

syntaq the expression of “lexical” information, i.e. the kind of information that IR systems usually

store in thesauri;

provide for an interesting, semantically clean, and natural way of thinking of the relevance of a

document to an informa<on need in terms of the “d+ n view” put forth by van Rljsbergen.

The primary syntactic expressions of TLs are terms. In TLs a term is an expression that denotes either

an individual, or a unary or binary relation on the domain of discourse. Terms denoting individuals

are called individual constants (hereafter indicated by met avariables i, il, iz, . . .), while terms denoting

unary relations are called concepts (indicated by met avariables C, Cl, C2, . . .) and terms denoting binary

relations are called roles (indicated by metavariables R, RI, R2, . . .). In the same manner as complex

sentences of classical sentential logics are formed by the recursive application of connective to sentential

letters, complex terms of TLs are formed by the recursive application of term-forming operators to

individual constants, unary predicate symbols (indicated by metavariables M, Ml, M2, . . .) and binary

predicate symbols (indicated by metavariables D, D1, D2, . . .). Each TL has its own set of operators;

the one included in MIRTL are detailed in Footnote 2.

In the model of IR developed in [9], a document is represented by an individual constant, while a

class of documents is represented by a concept. For example, the individual constant paper666 might

represent a particular document contained in the document base under consideration. Given the unary

predicate symbols paper and t 1, the binary predicate symbols author, appears-in, affiliation and

deals-with, and the individual constants SIGIR93 and IEI-CNR, the expression

(and paper

(func appears-in (sing SIGIR93))

1TL~ may in f=t be regarded as fragments of first-order logic.
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(all author (func affiliation (sing IEI-CNR)))

(c-some deals-with tl))

is a concept that (under the obvious interpretation for predicate symbols and individual constants, and

under the interpretation of term-forming operators detailed in [9]) denotes the class of all those papers

that appear in the SIGIR93 proceedings, all of whose authors are affiliated with IEI-CNR, and that deal

with TLs2. Note that, in describing this class of documents, we have freely interspersed “contextual”

information about these documents (i.e. their authors, the affiliation of these authors, the volume in

which the papers appear) and information about their “semantic content” (i.e. what these papers deal

with); quite obviously, clifferent types of information have the same semantic importance, ss they are

conveyed in the same, uniform language.

Terminological Logics also allow for instance assertions (or simply assertions – indicated by metavar-

iables ~, VI, 72, . . .), by means of which one can state that a given individual constant is an instance

of a given concept (or that a pair of individual constants is an instance of a given role). In the model

of IR developed in [9], an assertion is used to represent the membership of a document with a class of

documents, and hence to describe the document itselfi for inst ante, the assertion

(and paper

(func appears-in (sing SIGIR93))

(all author (furic aff iliation (sing IEI-CNR)))

(c-some deals-with tl)) ~aper666]

states that paper666 is a paper that appears in the SIGIR93 proceedings, all of whose authors are

affiliated with IEI-CNR, and that deals with TLs. The assertion mechanism also allows to represent the

fact that a document may itself be a part of a larger document, as in the following example:

(and conference-proceedings

(all (inv appears-in) (c-some deals-with (sing IR)))) [SIGIR93]

This assertion states that SIGIR93 is a volume containing the proceedings of a conference, and that all

of the papers appearing therein have information retrieval as their common topic. Note, incidentally,

that this states something about paper666 too, because in the previous assertion it had been stated that

paper666 appears in SIGIR93; about paper666 we now also know that it deals with information retrieval.

TLs also allow stating (by means of axioms – indicated by metavariables d, 61, 62, . . .)) that either a

relation of “conceptual containment” (<. ) or of “conceptual equivalence” (=) holds between two terms.

In the model of IR developed in [9], axioms are used to make lexical, “thesaural” knowledge available to

the reasoning mechanism in a transparent way. For example, the expression

tl = (and logic

(func syntax term-oriented-syntax)

(func semantics extensional-semantics))

defines TLs to be logics with a term-oriented syntax and an extensional semantics.

It is now easy to see how issues 1+3 are addressed within the model we have proposed: individual

documents are represented by individual constants, and are described by stating, by means of assertions,

their membership with classes of documents, which, in turn, are represented by means of concepts.

Also information needs, given that they can be viewed as identifying sets of documents (i.e. the set of

documents that the user states to correspond to his/her information need), are represented by concepts.

2 For reasons of space we will not give the formal semantics of the term-forming operators of MIRTL here; the interested
reader is referred either to [9] or to the full paper [1 O]. The injormal meaning of these operators is the following:

●

●

●

●

●

●

●

●

(top) and (bottom) denote the set of all individuals of the domain of discoume and the empty set, respectively;

(a-not M) denotes the set of all individuals of the domain that are not denoted by M;

(sing i) denotes the set containing only the individual denoted by i; this construct (its name standing for “singleton”)
is included in order to be able to have individual constants as subcomponents of concepts;

(an$ C, C2 . . . Cn) denotes the set of those individuals that are denoted by Cl and, at the same time, by C2 and
. . . .

(all ~ C) denotes the set of those individuals whose R’s are all C’s; for instance, (all author italian) denotes the
set of individuals whose authors are all italiaas;

(c-some R C) denotes the set of those individuals having at least one R that is a C; for instance, (c-some author
itriiiem) denotes the set of individuals that have at least one author who is an italiaa;

(atleast n R) (resp. (atmost n R)) denotes the set of those individtwds having at le~t (resp. at most) n R’s;

(inv R) denotes the set containing the inverses of those pairs that are denoted by R, for instance, (inv husband) will
be, under the obvious interpretation, equal to the role wife.

We will also use the following shorthands:

● (exactly n I?) will be used in place of (and (atleast n R) (atmost n R));

s (func R C) will be used in place of (and (all R C) (exactly 1 R)).
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The only issue we have not yet hinted to is how to accommodate the matching function between
queries and documents. In the model described in [9] this was done via the notion of subsumption (i.e.

“hierarchical domination” ) between terms. For better compatibility with what is to come in the rest of

this paper, we can restate the result in terms of the notion of validity, familiar from classical logic: the

terminological model sees IR as the task of retrieving, as a response to a query C, all and only those

documents i such that C’[i] is valid in ~, i.e. such that the denotation of i belongs to the denotation of

C’ in all interpretations satisfying the knowledge base Cl, i.e. the set of assertions describing documents

and their membership with document classes and axioms describing thesaural knowledge. In the case

of TLs, then, the “instance assertion” operator “[ ]“ plays the role of van Rijsbergen’s “+” conditional

connective.

3 The need for probabilities

In the previous section we have described how van Rijsbergen’s “d + n“ model can be instantiated

in the case of TLs. It now remains to be seen how we can extend this model in order to account for

van Rijsbergen’s recommendation that the logical model of IR should hinge on the computation of the

probability that d + n. In order to tackle this problem in our model, we should endow our representation

language with the possibility of attributing probabilities to the expressions that are to describe documents,

lexical knowledge and queries, and upon which the computation is to be based.

There are at least two different senses in which probabilities are used in IR. One is concerned with

the degrees of belief (or degrees of confidence) that the system (or the indexer) “subjectively” has in some

facts, such as the fact that a given document might be relevant to a given information need on the part

of the user. The second is concerned with “objective” statistical information that the system (or indexer)

has, and that is brought to bear in the decision process.

3.1 Information about degrees of belief

The first issue to take into consideration is the possibility of attributing a probability to an assertion. For

instance, the indexer (whether human or machine) might judge that the likelihood that paper666 would

be deemed relevant by a user formulating his/her information need by means of the query

(and paper (c-some deals-with tl))

is greater than or equal to 0.8. In doing this, the indexer is expressing his/her degree of belief in the

relevance of the document to the query. Accordingly, the representation language of our logic will allow

the expression of formulae such as

w((and paper (c-some deals-with tl)) [paper666]) ~ 0.8

and, in general, of formulae of type (w(~) relop t), where 7 is an assertion, t is an expression which

evaluates to a real number, and relop is one of the relational operators “=”, “#”, “S”, “z”, “<” and
“>” .

Suppose now we want to express the fact that, if we believed that paper666 is a document that deals

with logics, our degree of belief in the fact that papex666 deals with TLs would be greater or equal than

0.8. This is actually a conditional probability notion. But once we have the possibility of representing the

degree of belief in an assertion, this is easily expressible, as what this actually means is

to(and document tu(and document

(c-some deals-with tl) >0.8 . (c-some deals-with logic))

(c-some deals-with logic))

In keeping with the usual notation for conditional probabilities, we will abbreviate the latter formula as

~(=) ((c-some deals-with tl) I (and document (c-some deals-with logic))) ? 0.8

In semantic terms, along with [4], we will model degrees of belief by relying on a “possible worlds

semantics” (PWS) [7], i.e. by viewing the different statea of affairs (or “worlds”, in P WS jargon) that the

system considers in principle possible, as grouped into structures. We will postulate the existence of a

probability distribution on the set of worlds belonging to a given structure; in a given world, the formula

w(7) relop t will be true just in case the probability of the set of worlds belonging to the same structure

and in which -y is true “relop’s” the value of t at that world. Hence, the formula in the above example

will be true at world z just in case the probabilities of the worlds which are possible relative to z (i.e.

that belong to the same structure as z), and in which paper666 is indeed a paper that deals with TLs,

sum up to at least 0.8.

It goes without saying that the same mechanism can also be used for representing the degree of belief

of the system in an axiom. Our representation language will then allow the expression of formulae such

Ss
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w(tl <. (and logic (func syntax term-oriented-syntax))) ~ 0.8

It should be noted that, given the possible-worlds interpretation we have given above, this actually means
that the degree of belief that the system has in the fact that all TLs have a term-oriented syntax is at
least 0.8; it does not mean, instead, that the system firmly believes that more than 80% of all TLs have a
term-oriented syntax! There is a fundamental difference in these two statements, to the extent that they
should be seen as encoding two different kinds of knowledge: the truth of the latter statement, depends
on the objective state of the world, but the truth of the former depends instead on the subjective state
of a cognitive agent.

Indeed, the possibility to express a sentence of the latter, “statistical” type is of paramount importance
in a model of IR, as statistical notions play a central role in IR. In order to do this, however, we have to
int reduce further semantic mechanisms.

3.2 Statktical information

As we said in the previous section, the possibility of expressing statistical information would prove of

paramount importance in our model. For instance, the indexer might want to express the fact that 8C170

of the documents in the document base under consideration deal with computer science.

In order to do this, however, we have first to introduce the notion of assigning a probability to a

concept (or to a role). By “probability y of a concept C“ (resp. of a role 1?) here we mean the probability

that a randomly picked individual i (resp. pair of individuals (il, i2)) turns out to be a C (resp. a R). This

interpret ation is in keeping with the fact that here we want to model a statistical notion of probability y: we

intend to describe either a chance setup, or the statistical information that we might possess as a result of

experimentation on this chance setup. The real-valued quantity “the probability y that a randomly picked

individual is a C“ (resp. that a pair of randomly picked individuals are a R) will be expressed by the

probability term w(z) C (resp. by the probability term W(Z, ,$,} R).

Suppose now we want to express the fact that 80~o of the documents in the document base under

consideration deal with computer science. What this actually means is that the probability that an

individual which has been randomly picked out of the set of documents is about computer science is 0.8.

This is, again, a conditional probability notion, which is easily expressible, as it may be written as

w(=) (and document (c-some deals-with (sing CS))) = 0.8 . ZO(z}(document)

Similarly to the case of degrees of belief, we will abbreviate the latter formula as

U@)((c-some deals-with (sing CS)) I document) = 0.8

In semantic terms, we will have to take a radically different approach from the one based on “possible

worlds” of the previous section. Here we do not want to model the system’s uncertainty about the truth

value of a (non-probabilistic) proposition; rather, we want to model the system’s certaint y about the

truth value of a probabilistic proposition! What we need here is to “stay in a fixed world”, and postulate

a probability y distribution on the domain of discourse of that world: the probability of a concept will

then be the sum of the probabilities of the elements in the domain that belong to the denotation of that

concept. If the probability distribution is uniform, this corresponds to checking the relative cardinality of
the concept, i.e. the percentage of individuals of the domain that belong to the denotation of that concept

[1]. For instance, the probability of the concept (c-some deals-with (sing CS)) will be the sum of the

probabilities of those individuals that belong to its denotation, i.e. that deal with computer science.

4 A Probabilistic Terminological Logic

In the previous section we have informally argued how the introduction of probabilities into our “ter-

minological model” would allow the expression of a number of notions interesting to IR. In this section

we proceed to specify in full detail the syntax and semantics of a particular PTL, that we have dubbed

P- MIRTL. Actually, P- MIRTL consists of an extension of the MIRTL logic by means of probabilistic

features. It goes without saying that p-MIRTL should serve only as an example of the potentialities of

PTLs in modelling IR; other TLs different from MIRTL might be “plugged” in the framework without

any added work.
The semantics of our logic will be given in the style of denotationa~ semantics. For the logically

uninitiated, we should say that denotational semantics (also known as model-theoretic or Tarskian se-

mantics) is the standard way of formally specifying the meaning of logical languages. Such a specification

is accomplished by postulating the existence of a number of “ways the world could be” (interpretations),

and of systematically specifying in which of these interpretations the expressions of the language are

true; “systematically” here means that the semantic specification mirrors the recursive structure of the

synt attic BNF specification, with one semantic clause for each syntactic clause. Inference is then defined
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as the derivation of only those formulae that are true in all the interpretations in which the premises are

also true. The specification that follows fully conforms to this systematic pattern.

For reasons of space, we will not specify the semantics of MIRTL in full detail, but will limit our

discussion to its probabilistic extension; the interested reader may consult either [9] or the full paper [10].

4.1 Syntax

The syntax of P-MIRTL extension hinges on the notions of “formula” and “probability term”. These will

be defined in a mutually recursive way.

Definition 1 A probability term is either a mtional constant z, or is an expression of the form w(c) C,

or of the form W(=I ,=2)R, or of the form w(~) (with 4 a formula), or of the form (tl mat hop tz), whew

both tl and t2 are probability terms and “rnathop” is an opemtor in the set MATHOP={+,–, ”,+}.
A formula is either an axiom 6, or an assertion ~, or an expression of the form (tl re~op tz), where

both tl and t2 are probability terms and “relop” is an opemtor in the set RELOP={=,#,>,<, <,>}.

We will use metavariables ~, 41, q$z, . . . ranging on formulae and met avariables t,t1,t2, . . . ranging on

probability terms. As hinted in Section 3, we will use the notation w(z) (Cl IC2) relop t as shorthand for

the expression w(a) (and Cl C2) relop (t . W(z) C2), and the notation W(C1 [i] lCz[il) relop t M shorthand

for the expression w(and Cl [i] C2[i]) relop (t . w(C2[i])).

Note that our language is indeed much more powerful than the examples of Section 3 show3. For
instance, in formulae of type (t 1 relop t z ), term tz is not restricted to be a numeric expression; it is
therefore possible to compare, by means of a relational operator, two “complex” probability y terms, as in

w(z) (and document w(o) (and document

(c-some deals-uith < (c-some deals-with

(sing CS))) (sing Mathematics)))

Also, it is possible to “nest” probability operators, e.g. to express how strongly the system believes in

some proposition of a statistical nature. For example, it is possible to write two formulae like

W( w(z) (mult lmedia-document I document ) > 0.7) = 0.1

w(w{~) (rnultimedla-document [ document) z 0.2) = 0.8

whose combined effect is to assert that the system is not inclined to believe (i.e. its degree of belief is

0.1) that more than 70% of the documents in the collection are multimedia documents, but is definitely

more inclined to accept (i.e. its degree of belief is 0.8) that this percentage might only be above 20~o.

4.2 Semantics

Now that we have completely detailed the syntax of the probabilistic features of P- MIRTL, we may

switch to discussing its semantics (a semantics that will follow the guidelines of Halpern’s ,C3 logic [4]).

As previously hinted, a denotational semantics for a logical language is obtained by postulating the

existence of a number of “ways the world could be”; these are usually called interpretations. In our case,

these will exactly be the “interpretations” of MIRTL as defined and characterised in Definitions 1+5 of

[9]. Such interpretations consist of mappings of individual constants into individuals of the domain, and

of predicate symbols into relations on the domain, that are “well-behaved” with respect to the intuitive

meaning of the operators of the language (i.e. the term-forming operators, the assertion operator “[ ]“
and the axiom operators “<.” and “+”.).

In order to give semantics to the probabilistic features of P- MIRTL, we will adopt a version of “POSSible

world semantics” (P WS); as in all versions of PWS, we will see the set of interpretations aa partitioned

4. A PTL structure w a 4-uple M = {D, 1, vd~~, ~int ,into structures, that we will call PTL structures }
where ‘D is a nonempty set of individuals, I is a set of MIRTL interpretations on D, ~de~ is a discrete

probability distribution on the domain D, and v~~t is a discrete probability distribution on the set I of
interpretations.

3 In the full paper [IO] we also consider formd~ of type w(=l ,=2 JR where either Z1 or X2 maY be an individual constant.

This allows the expression of probabW terms such = W(~,SIGIM3 ) (appears - in), which expreeeee the “probability that a

randomly picked x appears in the SIGIR93 proceeding”.

4 In most approached based on PWS, interpretations are called “poeeible worlds”; we avoid using this terminology here,
both because it has often given rise to misunderstandings about the meaning of “possible”, and becauee we want to highlight
the relationship of containment between the semantice of MIRTL and the semantics of F’-MIRTL. It is worthwhile to notice
that, in the same way that poeeible worlds for e.g. sentential modal logic are truth value assignments (to the formulae of
sentential logic) that comply with the intuitive meaning of the connective of sentential logic, interpretations are assignments

of “extensions” (to concepts, roles and individual constants) that comply with tbe intuitive meaning of the operators of
MIRTL. It is thus clear that “classical” (sentential) possible worlds stand to sentential logic as our interpretation stand to
MIRTL.
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The notion of extension of a probabilistic term t in an interpretation ~ of M, written [4(M,z),and
the notion of truth of a formula ~ in an interpretation Z of M, written (M, Z) ~ ~, are defined, in a

mutually recursive way (this is obvious, given that the syntax of probabilistic terms and formulae is also

mutually recursively defined), by means of the following clauses:

1- [Z](M,Z)= z

2. [w(.)Ql(M,Z)= ~ ‘dom(d)
dcZ(C)

3. [qz,,Jv(M,z) = x v&m(Cil).v&~(dz)
(d,,d,)cT(R)

4. M4)I(M,Z)= E Vi~~(J)
YEI: (J’f,t-)i+

5. [tl mathop tz](M,r) = [tl](~,z) rnathop [~2](M,z)

6, (M, Z) + 6 M Z satisfies 6

7. (M, Z) ~ ~ iff Z satisfies ‘y

8. (M, Z) ~ tl relop tz iff [tl]t~,z) relop [tz](~,z)

We will now comment on the meaning of each of these clauses and then give a comprehensive example

of their use. Clause 1 simply states that the extension of a rational constant is always (i.e. in any

interpret ation Z of any PTL structure M) the rational number it obviously represents (e.g. the constants

0.25, ~ and + all represent the number 0.25). Analogously, Clause 5 states that the extension of a term

(tl rnaihop tz) is always obtained by the application of the real-valued operation mathop which the

symbol “rnathop” obviously represents (e.g. the “+” symbol representing addition), to the extensions of

the two terms involved; similar considerations apply to Clause 8.

Probabilities come in with Clause 2: in order to compute the extension, at a given interpretation Z

of M, of the probability that a randomly picked x be a C, we first check what individuals belong to the

interpretation of C under T, and then sum up the probabilities that the distribution ~dOm attributes to

them. The case of Clause 3 is completely analogous, the only difference being that pairs of individuals

(and, consequently, the product of their probabilities) have to be considered instead of single individuals.

Things are quite different with Clause 4; this clause aims to specify the semantics of formulae involving

the system’s degrees of belief, so a reference must be made to the interpretations that the system “believes

in principle possible” and to their respective probabilities. In order to compute the system’s degree of

belief in a formula, we first check what are the interpretations in which that formula is true, and then

sum up the probabilities that the distribution ~int attributes to them5.
Finally, things are quite simple for Clauses 6 and 7; MIRTL =sertions and axioms are true in an

interpretation Z just if they are satisfied by X in the sense of Definitions 2 and 3 of [9].
Let us now work out a simple example in order to see how all this works.

Example 1 Suppose we have a PTL structure M = {9, I, Vdom, Vint}j where:

● D is the set containing the three individuals a, b and c;

● I is the set consisting of the two interpretations Z1 and X2, which, given the two unary predicate

symbols d and md (which we might take to stand for “document” and “multimedia document”,

respectively), are such that Z1 (d) = {a, b}, Z1 (red) = {a, b}, Z2(d) = {a, b, C} and Z2(rnd) = {a};

● ~dom is a discrete probability distribution on V such that vdo~ (a) = 0.1, ~dorn(b) = 0.3 and Vdom (c) =

0.6;

● ~int is a discrete probability distribution on I such that ~int (21) = 0.65 and vint(Z2) = 0.35.

Suppose we want to know what is the eztension of the term

W(to(r) (mdlcl) Z 0.8)

(i.e. what is the system’s degree of belief in the fact that 80% of the documents in the collection are
multimedia) in interpretation Z1. This term is shorthand for the term

5 Readers familiar with P WS for modal logic might have noticed that, unlike what normally happens for formulae whose
interpretation depends on a multiplicity of “possible worlds”, there is no “accessibility relation” involved in the computation

of degrees of belief. This is not inconsistent with the principles underlying PWS, as it is well-known (see e.g. [5, pages
334–335]) that using the set of all worlds belonging to a modal structure is equivalent to using only the set of worlds that

are “accessible” through an equivalence relation. P-MIRTL is then conceptually similar to the SS modal logic; analogously
to what happens in S5, terms representing degrees of belief have the same extension in all interpretations belonging to the

same PTL structure.
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W(w(c) (and md d) 2 0.8. w{.)(d))

According to Definition 1 of [9], Z1 ((and md d)) = {a, b} and Zz((and md d)) = {a}. It follows that

w(~) (and md d) euahdes to v~~~ (a) + v~~~ (b) = 0.4 in ZI, and to V&-m(a) = 0.1 in Z2. Giuen that

w{=) (d) obuiockdy evaluates to ~d~~ (a) + ~d~~ (b) = 0.4 in xl, and to V&m(a) + V&wn (b) + Vdo?.n(c) = 1 in

12, the formula

w(.) (and md d) > 0.80 w(c)(d)

is true in ZI but false in Z2. Hence, the extension of the term

W(w(c) (mdld) ~ 0.8)

in Z1 is equal to ~iflt(Z1) = 0.65.

Notice that this term has the same extension also in interpretation Z2; as we have already noticed in

Footnote 5, terms expressing degrees of belief evaluate to the same value in all interpretations belonging

to the same PTL structure.

Similarly to what happens in all applications of logical reasoning, we are hardly interested in what is the

truth value of a given formula, or the extension of a given term, at a particular interpretation Z; loosely

speaking, we cannot know which interpretation is the correct one, i.e. the one that corresponds to the

“real world”, since we always have partial (and often erroneous) knowledge about the real world (in our

case: about the documents in our collection and about what they are about), and much of what is true

in the real world is unknown to us. Because of this, we are rather interested in what is the truth value of

a given formula, or the extension of a given term, at all those interpretations that are “consistent” with

our partial and erroneous knowledge about the world; this corresponds to the logical process of inferring

those formulae whose truth is a consequence of the truth of the formulae that constitute our knowledge

about the world. As in all other logics, in P- MIRTL this is formalised by the notion of validity in a theory.

Definition 2 A theory of ?-MIRTL is a set @ of formulae which is closed under logical consequence; i.e.

@ is such that, if ~ c @ and # is true in all the interpretations in which ~ is true, then also # E Q.

Definition 3 A formula 4 is valid in a theory @ of P-MIRTL, written >o ~, iff 4 is true in all inter-

pretations Z (of all PTL structures M) in which all formulae in @ are also true.

Note that the above observations on partial and erroneous knowledge apply to probability distributions

too. By relying on the notion of validity in a theory @, we free ourselves from the problem of knowing, in

all details, which probability distribution on the domain (resp. on possible worlds) is the correct one. This

is reasonable, as we could not hope to know the truth value of every (probabilistic) formula expressible

in our language: also our probabilistic knowledge is partial, and often erroneous too! A set of formulae

@ does not specify a probability distribution in full detail, but has the effect of putting a number of

constraints on how probability distributions “consistent” with @ should be; these constraints identify a

whole family of distributions, and the formulae valid in Q are exactly those formulae that are true in all

the interpretations characterised by these distributions.

An interesting side-effect of introducing the notion of probability distribution into the semantics of

our logic is that our logic will obey the familiar laws of the probability calculus; this will be true both

for formulae representing information about degrees of belief, and for formulae representing statistical

information. For example, Bayes’ Theorem is valid in our logic, i.e. all formulae of type

q.+(cl L’2) “ W(c)(C2) = W(z)(f5’21G) “ W(G)

or of type

w(Cl[i]lC2[d). w(C2[i]) = w(C2[illG[4) oW(cl[il)

will be valid in any theory 0, as can easily be seen by applying our definition of conditional probability.

According to the model of IR that we are proposing in this paper, a document i is then deemed to be

relevant to an information need C with probability r, with r a real number, iff the formula w (C[i]) = r

is valid in @, where Q is the (consequential closure of) the set of formulae representing the documents in

the collection and the lexical, “thesaural” knowledge of the system.

5 Concluding remarks

In this paper we have presented a logical model for information retrieval based on a probabilistic ter-

minological logic. In this model, IR is seen as the task of 1) computing, for a given information need

(represented by the concept) C and for each document (represented by an individual constant) i, the real

number (represented by the constant) r such that w (C[i]) = r is valid in @ (i.e. in the theory representing

the document base and the lexical, “thesaural” knowledge), and 2) ranking documents in terms of their

associated r.
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Besides enjoying the numerous properties that accrue from the adoption of a TL (properties that are

more fully described in [9]), this model takes advantage of the considerable expressive power provided by

our probabilistic extension to the terminological framework. This extension allows the distinct expression

of two radically and conceptually different kinds of probabilistic information that feature in the IR task,

i.e. statistical information, and information about the degrees of belief that the IR system being modelled

haa in other information.

Although statistical information and information about degrees of belief are conceptually different, it

is clear that there is a relationship between the two. Our work so far has aimed at providing a framework

in which both could be expressed and reasoned upon in a principled, semantically clear way. A further

step in this direction should be the investigation of mechanisms for allowing information about degrees

of belief to be directly deriuable from statistical information. For instance, ifthe system has no belief at

all (i.e. to no degree) whether a given assertion C[i] is true, but at the same time knows that 80% of all

individuals of the domain are C’s, it might plausibly decide to believe with a 0.8 degree of confidence that

i, a particular individual in the domain, is a C. This approach to the derivation of degrees of belief, well

known in actuarial reasoning, is known as direct inference (see e.g. [8]). Other approaches exist however,

yielding different results, and based on principles aa diverse as the maximum entropy principle (see e.g.

[3]), the centre of mass principle or the maximal independence principze (see e.g. [2]). Unfortunately,

in all of these approaches, degrees of belief are completely determined by statistical information, to the

extent that two formulae such aa w(C[i]) = rl and w(z)(C) = T2 would jointly imply that rI = ~2;

instead, it is clear that we would like to be able to entertain such beliefs without this implying that

r’1 = ?-2. Investigating mechanisms that allow statistical information to determine degrees of belief ordy

when these latter are not already determined is the next research task that this work opens up.
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