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Abstract. AdaBoost.MH is a popular supervised learning algorithm
for building multi-label (aka n-of-m) text classifiers. AdaBoost.MH be-
longs to the family of “boosting” algorithms, and works by iteratively
building a committee of “decision stump” classifiers, where each such
classifier is trained to especially concentrate on the document-class pairs
that previously generated classifiers have found harder to correctly clas-
sify. Each decision stump hinges on a specific “pivot term”, checking its
presence or absence in the test document in order to take its classifi-
cation decision. In this paper we propose an improved version of Ad-

aBoost.MH, called MP-Boost, obtained by selecting, at each iteration
of the boosting process, not one but several pivot terms, one for each
category. The rationale behind this choice is that this provides highly
individualized treatment for each category, since each iteration thus gen-
erates, for each category, the best possible decision stump. We present the
results of experiments showing that MP-Boost is much more effective
than AdaBoost.MH. In particular, the improvement in effectiveness is
spectacular when few boosting iterations are performed, and (only) high
for many such iterations. The improvement is especially significant in
the case of macroaveraged effectiveness, which shows that MP-Boost is
especially good at working with hard, infrequent categories.

1 Introduction

Given a set of textual documents D and a predefined set of categories (aka
labels) C = {c1, . . . , cm}, multi-label (aka n-of-m) text classification is the task
of approximating, or estimating, an unknown target function Φ : D × C →
{−1, +1}, that describes how documents ought to be classified, by means of a
function Φ̂ : D×C → {−1, +1}, called the classifier, such that Φ and Φ̂ “coincide
as much as possible”. Here, “multi-label” indicates that the same document can
belong to zero, one, or several categories at the same time.

AdaBoost.MH [1] is a popular supervised learning algorithm for building
multi-label text classifiers. AdaBoost.MH belongs to the family of “boost-
ing” algorithms (see [2] for a review), which have enjoyed a wide popularity in
the text categorization and filtering community because of their state-of-the-art
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effectiveness and of the strong justifications they have received from compu-
tational learning theory. AdaBoost.MH works by iteratively building a com-
mittee of “decision stump” classifiers1, where each such classifier is trained to
especially concentrate on the document-category pairs that previously generated
classifiers have found harder to correctly classify. Each decision stump hinges on
a specific “pivot term”, and takes its classification decision based on the presence
or absence of the pivot term in the test document.

We here propose an improved version of AdaBoost.MH, called MP-Boost,
obtained by selecting, at each iteration of the boosting process, not one but
several pivot terms, one for each category. The rationale behind this choice is
that this provides highly individualized treatment for each category, since each
iteration generates, for each category, the best possible decision stump. The
result of the learning process is thus not a single classifier committee, but a set
of such committees, one for each category.

The paper is structured as follows. In Section 2 we concisely describe boosting
and the AdaBoost.MH algorithm. Section 3 describes in detail our MP-Boost

algorithm and the rationale behind it. In Section 4 we present experimental
results comparing AdaBoost.MH and MP-Boost. Section 5 concludes.

2 An Introduction to Boosting and AdaBoost.MH

AdaBoost.MH [1] (see Figure 1) is a boosting algorithm, i.e. an algorithm that
generates a highly accurate classifier (also called final hypothesis) by combining
a set of moderately accurate classifiers (also called weak hypotheses). The input
to the algorithm is a training set Tr = {〈d1, C1〉, . . . , 〈dg, Cg〉}, where Ci ⊆ C
is the set of categories to each of which di belongs.

AdaBoost.MH works by iteratively calling a weak learner to generate a
sequence Φ̂1, . . . , Φ̂S of weak hypotheses; at the end of the iteration the final
hypothesis Φ̂ is obtained as a sum Φ̂ =

∑S
s=1 Φ̂s of these weak hypotheses. A

weak hypothesis is a function Φ̂s : D×C → R. We interpret the sign of Φ̂s(di, cj)
as the prediction of Φ̂s on whether di belongs to cj, i.e. Φ̂s(di, cj) > 0 means
that di is believed to belong to cj while Φ̂s(di, cj) < 0 means it is believed not
to belong to cj . We instead interpret the absolute value of Φ̂s(di, cj) (indicated
by |Φ̂s(di, cj)|) as the strength of this belief.

At each iteration s AdaBoost.MH tests the effectiveness of the newly gen-
erated weak hypothesis Φ̂s on the training set and uses the results to update a
distribution Ds of weights on the training pairs 〈di, cj〉. The weight Ds+1(di, cj)
is meant to capture how effective Φ̂1, . . . , Φ̂s have been in correctly predicting
whether the training document di belongs to category cj or not. By passing
(together with the training set Tr) this distribution to the weak learner, Ad-

aBoost.MH forces this latter to generate a new weak hypothesis Φ̂s+1 that
concentrates on the pairs with the highest weight, i.e. those that had proven
harder to classify for the previous weak hypotheses.
1 A decision stump is a decision tree of depth one, i.e. consisting of a root node and

two or more leaf nodes.
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Input: A training set Tr = {〈d1, C1〉, . . . , 〈dg, Cg〉}
where Ci ⊆ C = {c1, . . . , cm} for all i = 1, . . . , g.

Body: Let D1(di, cj) =
1

gm
for all i = 1, . . . , g and for all j = 1, . . . , m

For s = 1, . . . , S do:
• pass distribution Ds(di, cj) to the weak learner;
• get the weak hypothesis Φ̂s from the weak learner;

• set Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs

where Zs =
g�

i=1

m�

j=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

is a normalization factor chosen so that
g�

i=1

m�

j=1

Ds+1(di, cj) = 1

Output: A final hypothesis Φ̂(d, c) =
S�

s=1

Φ̂s(d, c)

Fig. 1. The AdaBoost.MH algorithm

The initial distribution D1 is uniform. At each iteration s all the weights
Ds(di, cj) are updated to Ds+1(di, cj) according to the rule

Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs
(1)

where

Zs =
g∑

i=1

m∑

j=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj)) (2)

is a normalization factor chosen so that Ds+1 is in fact a distribution, i.e. so
that

∑g
i=1

∑m
j=1 Ds+1(di, cj) = 1. Equation 1 is such that the weight assigned

to a pair 〈di, cj〉 misclassified by Φ̂s is increased, as for such a pair Φ(di, cj) and
Φ̂s(di, cj) have different signs and the factor Φ(di, cj) · Φ̂s(di, cj) is thus negative;
likewise, the weight assigned to a pair correctly classified by Φ̂s is decreased.

2.1 Choosing the Weak Hypotheses

In AdaBoost.MH each document di is represented as a vector 〈w1i, . . . , wri〉
of r binary weights, where wki = 1 (resp. wki = 0) means that term tk occurs
(resp. does not occur) in di; T = {t1, . . . , tr} is the set of terms that occur in at
least one document in Tr.

In AdaBoost.MH the weak hypotheses generated by the weak learner at
iteration s are decision stumps of the form
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Φ̂s(di, cj) =
{

a0j if wki = 0
a1j if wki = 1 (3)

where tk (called the pivot term of Φ̂s) belongs to {t1, . . . , tr}, and a0j and a1j

are real-valued constants. The choices for tk, a0j and a1j are in general different
for each iteration s, and are made according to an error-minimization policy
described in the rest of this section.

Schapire and Singer [3] have proven that the a reasonable (although subopti-
mal) way to maximize the effectiveness of the final hypothesis Φ̂ is to “greedily”
choose each weak hypothesis Φ̂s (and thus its parameters tk, a0j and a1j) in such
a way as to minimize the normalization factor Zs.

Schapire and Singer [1] define three different variants of AdaBoost.MH,
corresponding to three different methods for making these choices. In this pa-
per we concentrate on one of them, AdaBoost.MH with real-valued predictions
(hereafter simply called AdaBoost.MH), since it is the one that, in [1], has
been experimented most thoroughly and has given the best results; the modi-
fications that we discuss in Section 3 straightforwardly apply also to the other
two variants. AdaBoost.MH chooses weak hypotheses of the form described in
Equation 3 by the following algorithm.

Algorithm 1 (The AdaBoost.MH weak learner)

1. For each term tk ∈ {t1, . . . , tr}, select, among all the weak hypotheses
Φ̂ that have tk as the “pivot term”, the one (indicated by Φ̂best(k)) for
which Zs is minimum.

2. Among all the hypotheses Φ̂best(1), . . . , Φ̂best(r) selected for the r differ-
ent terms in Step 1, select the one (indicated by Φ̂s) for which Zs is
minimum.

Step 1 is clearly the key step, since there are a non-enumerable set of weak
hypotheses with tk as the pivot term. Schapire and Singer [3] have proven that,
given term tk and category cj ,

Φ̂best(k)(di, cj) =

⎧
⎪⎨

⎪⎩

1
2 ln

W 0jk
+1

W 0jk
−1

if wki = 0

1
2 ln

W 1jk
+1

W 1jk
−1

if wki = 1
(4)

where

W xjk
b =

g∑

i=1

Ds(di, cj) · [[wki = x]] · [[Φ(di, cj) = b]] (5)

for b ∈ {−1, +1}, x ∈ {0, 1}, j ∈ {1, . . . , m} and k ∈ {1, . . . , r}, and where [[π]]
indicates the characteristic function of predicate π (i.e. the function that returns
1 if π is true and 0 otherwise.

The output of the final hypothesis is the value Φ̂(di, cj) =
∑S

s=1 Φ̂s(di, cj)
obtained by summing the outputs of the weak hypotheses.
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2.2 Implementing AdaBoost.MH

Following [4], in our implementation of AdaBoost.MH we have further op-
timized the final hypothesis Φ̂(di, cj) =

∑S
s=1 Φ̂s(di, cj) by “compressing” the

weak hypotheses Φ̂1, . . . , Φ̂S according to their pivot term tk. In fact, note that
if {Φ̂1, . . . , Φ̂S} contains a subset {Φ̂

(k)
1 , . . . , Φ̂

(k)
q(k)} of weak hypotheses that all

hinge on the same pivot term tk and are of the form

Φ̂(k)
r (di, cj) =

{
ar
0j if wki = 0

ar
1j if wki = 1 (6)

for r = 1, . . . , q(k), the collective contribution of Φ̂
(k)
1 , . . . , Φ̂

(k)
q(k) to the final

hypothesis is the same as that of a “combined hypothesis”

Φ̂(k)(di, cj) =

{∑q(k)
r=1 ar

0j if wki = 0
∑q(k)

r=1 ar
1j if wki = 1

(7)

In the implementation we have thus replaced
∑S

s=1 Φ̂s(di, cj) with
∑Δ

k=1 Φ̂(k)

(di, cj), where Δ is the number of different terms that act as pivot for the weak
hypotheses in {Φ̂1, . . . , Φ̂S}.

This modification brings about a considerable efficiency gain in the application
of the final hypothesis to a test example. For instance, the final hypothesis we
obtained on Reuters-21578 with AdaBoost.MH when S = 1000 consists of
1000 weak hypotheses, but the number of different pivot terms is only 766 (see
Section 4.2). The reduction in the size of the final hypothesis which derives from
this modification is usually larger when high reduction factors have been applied
in a feature selection phase, since in this case the number of different terms that
can be chosen as the pivot is smaller.

3 MP-Boost, an Improved Boosting Algorithm with
Multiple Pivot Terms

We here propose an improved version of AdaBoost.MH, dubbed AdaBoost.

MH with multiple pivot terms (here nicknamed MP-Boost), that basically con-
sists in modifying the form of weak hypotheses and how they are generated.
Looking at Equation 3 we may note that, at each iteration s, choosing a weak
hypothesis means choosing (i) a pivot term tk, the same for all categories, and (ii)
for each category cj , a pair of constants 〈a0j , a1j〉. We contend that the fact that,
at iteration s, the same term tk is chosen as the pivot term on which the binary
classifiers for all categories hinge, is clearly suboptimal. At this iteration term tk
may be a very good discriminator for category c′, but a very poor discriminator
for category c′′, which means that the weak hypothesis generated at this iteration
would contribute very little to the correct classification of documents under c′′.
We claim that choosing, at every iteration s, a different pivot term t〈s,j〉 for each
category cj allows the weak hypothesis to provide customized treatment to each
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individual category. In MP-Boost the weak hypotheses generated by the weak
learner at iteration s are thus of the form

Φ̂s(di, cj) =
{

a0j if w〈s,j〉i = 0
a1j if w〈s,j〉i = 1 (8)

where term t〈s,j〉 is the pivot term chosen for category cj at iteration s. To see
how MP-Boost chooses weak hypotheses of the form described in Equation 8,
let us first define a weak cj-hypothesis as a function

Φ̂j(di) =
{

a0j if wki = 0
a1j if wki = 1 (9)

that is only concerned with classifying documents under cj ; a weak hypothesis
is the union of weak cj-hypotheses, one for each cj ∈ C. At each iteration s,
MP-Boost chooses a weak hypothesis Φ̂s by means of the following algorithm.

Algorithm 2 (The MP-Boost weak learner)

1. For each category cj and for each term tk ∈ {t1, . . . , tr}, select, among all
weak cj-hypothesis Φ̂j that have tk as the pivot term, the one (indicated
by Φ̂j

best(k)) which minimizes

Zj
s =

g∑

i=1

Ds(di, cj) exp(−Φ(di, cj) · Φ̂j(di)) (10)

2. For each category cj, among all the hypotheses Φ̂j
best(1), . . . , Φ̂j

best(r) se-

lected in Step 1 for the r different terms, select the one (indicated by Φ̂j
s)

for which Zj
s is minimum;

3. Choose, as the weak hypothesis Φ̂s, the “union”, across all cj ∈ C, of
the weak cj-hypotheses selected in Step 2, i.e. the function such that
Φ̂s(di, cj) = Φ̂j

s(di).

Note the difference between Algorithm 1, as described in Section 2.1, and Al-
gorithm 2; in particular, Step 2 of Algorithm 2 is such that weak cj-hypotheses
based on different pivot terms may be chosen for different categories cj .

For reasons analogous to the ones discussed in Section 2.1, Step 1 is the key
step; it is important to observe that Φ̂j

best(k) is still guaranteed to have the form
described in Equation 4, since the weak hypothesis generated by Equation 8
is the same that Equation 3 generates when m = 1, i.e. when C contains one
category only.

Note also that the “outer” algorithm of Figure 1 is untouched by our modifi-
cations, except for the fact that a normalization factor Zj

s local to each category
cj is used (in place of the “global” normalization factor Zs) in order to obtain

the revised distribution Ds+1; i.e. Ds+1(di, cj) = Ds(di,cj) exp(−Φ(di,cj)·Φ̂j(di))
Zj

s
.

The main difference in the algorithm is thus in the “inner” part, i.e. in the weak
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hypotheses that are received from the weak learner, which now have the form of
Equation 8, and in the way they are generated.

Concerning the optimizations discussed in Section 2.2, obtained by merging
into a single weak hypothesis all weak hypotheses that share the same pivot
term, note that in MP-Boost these must be done on a category-by-category
basis, i.e. by merging into a single weak cj-hypothesis all weak cj-hypotheses
that share the same pivot term. The effect of this is that the different categories
c1, . . . , cm may be associated to final hypotheses consisting of different numbers
Δ1, . . . , Δm of weak hypotheses.

Last, let us note that one consequence of switching from AdaBoost.MH to
MP-Boost is that local feature selection (i.e. choosing different reduced feature
sets for different categories) can also be used in place of global feature selection
(i.e. choosing the same reduced feature set for all categories). In fact, since in
MP-Boost the choice of pivot terms is category-specific, the vectorial represen-
tations of documents can also be category-specific. This allows the designer to
select, ahead of the learning phase and by means of standard feature selection
techniques, the terms that are the most discriminative for a given category cj ,
and are thus highly likely to be chosen as pivot terms for the cj-hypotheses. This
can be done separately for each individual category, and thus allows the use of
even higher reduction factors; from the standpoint of efficiency this is advanta-
geous, given that the computational cost of MP-Boost has a linear dependence
on the number of features used (see Section 3).

In an extended version of this paper [5] we discuss the computational cost of
MP-Boost, proving that:

– At training time both AdaBoost.MH and MP-Boost are O(grm).
– At testing time, at a first approximation, AdaBoost.MH can be shown to

be O(S), while MP-Boost is instead O(mS). In practice, since weak hy-
potheses are “compressed”, as described in Section 2.2, for both learners the
cost linearly depends on Δ, the number of distinct pivot terms selected dur-
ing the training process (for MP-Boost, we take Δ to be an average of the
category-specific Δi values). For a given value of S the value of Δ tends to
be much smaller for MP-Boost than for AdaBoost.MH, since the “good”
pivot terms for a specific category tend to be few. As a result, for the testing
phase the differential in cost between the two algorithms is, in practice, much
smaller than the upper bounds discussed above seem to suggest.

4 Experiments

4.1 Experimental Setting

In our experiments we have used the Reuters-21578 and RCV1-v2 corpora.
“Reuters-21578, Distribution 1.0” is currently the most widely used bench-

mark in multi-label text categorization research2. It consists of a set of 12,902

2 http://www.daviddlewis.com/resources/testcollections/~reuters21578/
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news stories, partitioned (according to the “ModApté” split we have adopted)
into a training set of 9,603 documents and a test set of 3,299 documents. The
documents are labelled by 118 categories; in our experiments we have restricted
our attention to the 115 categories with at least one positive training example.

Reuters Corpus Volume 1 version 2 (RCV1-v2)3 is a more recent text
categorization benchmark made available by Reuters and consisting of 804,414
news stories produced by Reuters from 20 Aug 1996 to 19 Aug 1997. In our
experiments we have used the “LYRL2004” split, defined in [6], in which the
(chronologically) first 23,149 documents are used for training and the other
781,265 are used for test. Of the 103 “Topic” categories, in our experiments
we have restricted our attention to the 101 categories with at least one positive
training example.

In all the experiments discussed in this paper, stop words have been removed,
punctuation has been removed, all letters have been converted to lowercase,
numbers have been removed, and stemming has been performed by means of
Porter’s stemmer. Feature selection has been performed by scoring features by
means of information gain, defined as IG(tk, ci) =

∑
c∈{ci,ci}

∑
t∈{tk,tk} P (t, c) ·

log P (t,c)
P (t)·P (c) . The final set of features has been chosen according to Forman’s

round robin technique, which consists in picking, for each category ci, the v
features with the highest IG(tk, ci) value, and pooling all of them together into
a category-independent set [7]. This set thus contains at most vm features, where
m is the number of categories; it usually contains strictly fewer than vm features,
since some features are among the best v features for more than one category.
We have set v to 48 (for Reuters-21578) and 177 (for RCV1-v2); these are
the values that bring about feature set sizes of 2,012 (Reuters-21578) and
5,509 (RCV1-v2), thus achieving 90% reduction with respect to the original
sets which consisted of 20,123 (Reuters-21578) and 55,051 (RCV1-v2) terms.

As a measure of effectiveness that combines the contributions of precision
(π) and recall (ρ) we have used the well-known F1 function, defined as F1 =
2πρ
π+ρ = 2TP

2TP+FP+FN , where TP , FP , and FN stand for the numbers of true
positives, false positives, and false negatives, respectively. We compute both
microaveraged F1 (denoted by Fμ

1 ) and macroaveraged F1 (FM
1 ). Fμ

1 is obtained
by (i) computing the category-specific values TPi, (ii) obtaining TP as the sum
of the TPi’s (same for FP and FN), and then (iii) applying the F1 = 2πρ

π+ρ

formula. FM
1 is obtained by first computing the category-specific F1 values and

then averaging them across the ci’s.

4.2 Results

The results of our experiments are reported in Table 1 for some key values of
the number of iterations S; Figure 2 reports the same results in graphical form
for any value of S comprised in the [1..1000] interval. It is immediate to observe
that, for any value of S, MP-Boost always improves on AdaBoost.MH, in
terms of both Fμ

1 and FM
1 .

3 http://trec.nist.gov/data/reuters/reuters.html
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Let us discuss the results obtained on Reuters-21578 (the ones obtained
on RCV1-v2 are qualitatively similar)4. For small values of S the improvement
in effectiveness of MP-Boost wrt AdaBoost is spectacular: Fμ

1 goes up by
+69.47% for S = 5, by +57.07% for S = 10, and by +30.07% for S = 20. As
the value of S grows, the margin between the two learners narrows: we obtain
+4.34% for S = 1, 000 and +4.20% for S = 10, 000. This fact may be explained
by noting that in AdaBoost.MH, if the final hypothesis consists of a few weak
hypotheses only, it is likely that only few categories have been properly addressed
(i.e. that the pivot terms used in the committee have a high discrimination power
for few categories only). When the number of weak hypotheses gets larger, it is
more likely that many (or most of the) categories have been properly catered for.
Conversely, MP-Boost has already used the best pivot terms for each category
right from the very first iterations; this explains the fact that MP-Boost is
highly effective even for small values of S.

Note that the improvement brought about by the individualized treatment
of categories implemented by MP-Boost is not recovered by AdaBoost.MH

even by pushing S to the limit. For instance, note that not even in 10,000 itera-
tions AdaBoost.MH manages to obtain the Fμ

1 values obtained by MP-Boost

in just 50 iterations: MP-Boost with S = 50 obtains a slightly superior effec-
tiveness (+1.4%) than AdaBoost.MH with S = 10, 000, in less than 1% the
training time and in about 10% the testing time of this latter.

These effectiveness improvements are even more significant when consider-
ing macroaveraged effectiveness. In this case, we obtain a relative improvement
in FM

1 that ranges from a minimum of +21.13% (obtained for S = 10, 000)
to a maximum of +124,70% (obtained for S = 5). Again, not even in 10,000
iterations AdaBoost.MH obtains the FM

1 values obtained by MP-Boost in
just 5 iterations. This may be explained by recalling the well-known fact that
macroaveraged effectiveness especially rewards those classifiers that perform well
also on infrequent categories (i.e. categories with few positive training examples);
indeed, unlike AdaBoost.MH, MP-Boost places equal emphasis on all cate-
gories, regardless of their frequency, thus picking the very best pivot terms for
the infrequent categories too right from the first iterations.

Let us now discuss the relative efficiency of the two learners. As expected, for
both learners the time required to generate the final committees grows linearly
with the number of boosting iterations S. We also observed an almost constant
ratio between the running times of the two learners, with MP-Boost being
about 9% slower than AdaBoost.MH. A profiling session on the applications
has pointed out that this difference is due to the larger (by a constant factor)
4 The reader might notice that the best performance we have obtained from Ad-

aBoost.MH on Reuters-21578 (F μ
1 = .808) is inferior to the one reported in [1]

for the same algorithm (F μ
1 = .851). There are several reasons for this: (a) [1] actu-

ally uses a different, much older version of this collection, called Reuters-21450 [8];
(b) [1] only uses the 93 categories which have at least 2 positive training examples
and 1 positive test example, while we also use the categories that have just 1 positive
training example and those that have no positive test example. This makes the two
sets of AdaBoost.MH results difficult to compare.
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Table 1. Comparative performance of AdaBoost.MH and MP-Boost on the
Reuters-21578 and RCV1-v2 benchmarks, with (i) a full feature set and with (ii) a
reduced feature set obtained with a round-robin technique and 90% reduction factor.
S indicates the number of boosting iterations; F μ

1 and F M
1 indicate micro- and macro-

averaged F1, respectively; τ (Tr) and τ (Te) indicate the time (in seconds) required for
training and testing, respectively.

AdaBoost.MH MP-Boost MP-Boost wrt AdaBoost.MH

S F μ
1 F M

1 τ(Tr) τ(Te) F μ
1 F M

1 τ(Tr) τ(Te) F μ
1 F M

1 τ(Tr) τ(Te)

R
e
u
t
e
r
s
-
2
1
5
7
8

fu
ll

fe
at

u
re

se
t

5 0.416 0.235 12.1 0.1 0.704 0.529 13.2 0.2 +69.47% +124.70% +9.09% +100.0%
10 0.483 0.271 24.2 0.1 0.759 0.556 26.4 0.3 +57.07% +105.52% +9.09% +183.3%
20 0.611 0.325 48.4 0.1 0.795 0.586 52.8 0.5 +30.07% +80.44% +9.09% +266.6%
50 0.723 0.392 96.8 0.2 0.822 0.589 105.7 1.1 +13.79% +50.44% +9.19% +324.0%

100 0.776 0.454 193.6 0.4 0.837 0.608 211.3 1.7 +7.91% +34.06% +9.14% +326.8%
200 0.798 0.461 387.1 0.8 0.843 0.600 422.7 3.1 +5.68% +30.16% +9.20% +297.4%
500 0.811 0.485 774.2 2.0 0.848 0.604 845.3 6.3 +4.51% +24.62% +9.18% +216.1%

1000 0.811 0.482 1548.4 3.7 0.846 0.603 1690.6 9.2 +4.34% +25.06% +9.18% +150.1%
10000 0.810 0.497 15483.9 10.0 0.844 0.602 16906.2 20.6 +4.20% +21.13% +9.18% +106.0%

R
C

V
1
-
v
2

fu
ll

fe
at

u
re

se
t

5 0.361 0.037 34.5 21.8 0.519 0.306 37.3 54.0 +43.89% +720.57% +8.12% +147.9%
10 0.406 0.070 69.1 25.5 0.588 0.367 74.7 91.8 +44.80% +421.88% +8.10% +260.7%
20 0.479 0.131 138.1 32.7 0.646 0.418 149.4 148.5 +34.96% +218.09% +8.18% +354.7%
50 0.587 0.239 276.2 54.6 0.700 0.455 298.7 286.2 +19.24% +90.63% +8.15% +423.8%

100 0.650 0.333 552.4 87.5 0.726 0.474 597.5 472.5 +11.75% +42.33% +8.16% +439.8%
200 0.701 0.396 1104.8 161.5 0.745 0.487 1194.9 837.0 +6.20% +23.00% +8.16% +418.3%
500 0.735 0.435 2209.7 516.1 0.761 0.495 2389.9 1698.3 +3.58% +13.74% +8.15% +229.1%

1000 0.745 0.442 4419.3 1014.4 0.768 0.496 4779.7 2478.6 +2.99% +12.21% +8.16% +144.4%
10000 0.754 0.459 44192.3 2831.4 0.765 0.485 47796.2 5772.4 +1.46% +5.66% +8.16% +103.9%

R
e
u
t
e
r
s
-
2
1
5
7
8

re
d
.
fe

at
u
re

se
t 5 0.416 0.235 9.3 0.1 0.704 0.515 10.2 0.2 +69.23% +119.15% +9.68% +133.3%

10 0.483 0.271 18.5 0.1 0.760 0.560 20.4 0.3 +57.35% +106.64% +10.27% +200.0%
20 0.611 0.325 37.1 0.1 0.794 0.567 40.7 0.5 +29.95% +74.46% +9.70% +307.7%
50 0.723 0.392 74.1 0.2 0.826 0.596 81.4 1.0 +14.25% +52.04% +9.85% +325.0%

100 0.773 0.457 148.3 0.4 0.839 0.614 162.9 1.7 +8.54% +34.35% +9.84% +315.0%
200 0.790 0.474 296.5 0.7 0.845 0.623 325.8 2.9 +6.96% +31.43% +9.88% +288.0%
500 0.811 0.485 593.0 1.9 0.846 0.617 651.5 5.8 +4.32% +27.22% +9.87% +202.1%

1000 0.806 0.484 1186.0 3.2 0.839 0.619 1303.0 8.2 +4.09% +27.89% +9.87% +153.2%

R
C

V
1
-
v
2

re
d
.
fe

at
u
re

se
t 5 0.361 0.037 28.2 21.1 0.519 0.307 30.5 49.6 +43.77% +729.73% +8.16% +135.6%

10 0.406 0.070 56.4 24.4 0.587 0.365 61.0 78.0 +44.58% +421.43% +8.16% +219.3%
20 0.479 0.131 112.7 31.2 0.646 0.416 122.1 125.6 +34.86% +217.56% +8.34% +302.1%
50 0.587 0.239 225.4 54.6 0.701 0.458 244.2 247.4 +19.42% +91.63% +8.34% +352.8%

100 0.650 0.333 450.9 84.6 0.727 0.478 488.4 442.3 +11.85% +43.54% +8.32% +422.7%
200 0.701 0.396 901.8 154.4 0.744 0.493 976.8 896.9 +6.13% +24.49% +8.32% +481.0%
500 0.734 0.431 1803.5 495.9 0.760 0.503 1953.5 2133.1 +3.54% +16.71% +8.32% +330.2%

1000 0.747 0.445 3607.0 974.7 0.764 0.505 3907.0 3500.6 +2.28% +13.48% +8.32% +259.2%

size of weak hypotheses in MP-Boost (see Section 3), which generates a small
overhead in memory management. In terms of testing time, instead, it turns out
that MP-Boost is, for equal numbers S of boosting iterations, from one to four
times slower than AdaBoost.MH (see Table 1). This is due to the fact that
AdaBoost.MH selects, for the same value S, a number Δ of distinct pivot terms
smaller than the number

∑m
i=1 Δi that MP-Boost selects (see Section 2.2), and

to the fact that the classifier tests all the values of these terms in the document.
However, note that for MP-Boost this loss in testing efficiency is more than
compensated by the large gain in effectiveness. Also, with MP-Boost trained
on the full feature set with S = 1000 (a value at which effectiveness peaks) the
time required for classifying all the 781,265 RCV1-v2 test documents is about
79 minutes, which is more than acceptable.
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Fig. 2. Effectiveness of AdaBoost.MH and MP-Boost on Reuters-21578 (left) and
RCV1-v2 (right) as a function of the number S of iterations. The X axis is displayed
on a logarithmic scale.

Last, let us note that the experiments run with the reduced feature set (see
Table 1) have produced practically unchanged effectiveness results wrt those
obtained with the full feature set, but (as expected – see Section 3) at the ad-
vantage of dramatically smaller training times and substantially smaller testing
times. That feature selection does not reduce effectiveness might seem surpris-
ing in the context of a boosting algorithm, since feature selection brings about
smaller degrees of freedom in the choice of the best pivot term; quite evidently,
IG is very effective at discarding the terms that the boosting algorithm would
not choose anyway as pivots.

5 Conclusion

We have presented MP-Boost, a novel algorithm for multi-label text categoriza-
tion that improves upon the well-known AdaBoost.MH algorithm by selecting
multiple pivot terms at each boosting iteration, we have provided (training time
and testing time) complexity results for it, and we have thoroughly tested it
on two well-known benchmarks, one of which consisting of more than 800,000
documents. The results allow us to conclude that MP-Boost is a largely su-
perior alternative to AdaBoost.MH since, at the price of a tolerable decrease
in classification efficiency, it yields speedier convergence, superior microaveraged
effectiveness, and dramatically superior macroaveraged effectiveness. This latter
fact makes it especially suitable to categorization problems in which the distri-
bution of training examples across the categories is highly skewed.
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