
TreeBoost.MH: A Boosting Algorithm
for Multi-label Hierarchical Text Categorization

Andrea Esuli, Tiziano Fagni, and Fabrizio Sebastiani

Istituto di Scienza e Tecnologia dell’Informazione
Consiglio Nazionale delle Ricerche

Via Giuseppe Moruzzi 1 – 56124 Pisa, Italy
{andrea.esuli, tiziano.fagni, fabrizio.sebastiani}@isti.cnr.it

Abstract. In this paper we propose TreeBoost.MH, an algorithm for
multi-label Hierarchical Text Categorization (HTC) consisting of a hier-
archical variant of AdaBoost.MH. TreeBoost.MH embodies several
intuitions that had arisen before within HTC: e.g. the intuitions that
both feature selection and the selection of negative training examples
should be performed “locally”, i.e. by paying attention to the topology
of the classification scheme. It also embodies the novel intuition that the
weight distribution that boosting algorithms update at every boosting
round should likewise be updated “locally”. We present the results of
experimenting TreeBoost.MH on two HTC benchmarks, and discuss
analytically its computational cost.

1 Introduction

Hierarchical text categorization (HTC) is the task of generating text classifiers
that operate on classification schemes endowed with a hierarchical structure.
Notwithstanding the fact that most large-sized classification schemes for text
(e.g. the ACM Classification Scheme1) indeed have a hierarchical structure, so
far the attention of text classification (TC) researchers has mostly focused on al-
gorithms for “flat” classification, i.e. algorithms that operate on non-hierarchical
classification schemes. These algorithms, once applied to a hierarchical classifi-
cation problem, are not capable of taking advantage of the information inherent
in the class hierarchy. On the contrary, many researchers have argued that by
leveraging on the hierarchical structure of the classification scheme, heuristics
of various kinds can be brought to bear that make the classifier more efficient
and/or more effective. Many of these heuristics have been used in close associa-
tion with a specific learning algorithm; the most popular choices in this respect
have been näıve Bayesian methods [1, 2, 3, 4, 5, 6], neural networks [7, 8, 9], sup-
port vector machines [10, 11], and example-based classifiers [11].

Within this literature, the absence of “boosting” methods is conspicuous: to
the best of our knowledge, we do not know of any HTC method belonging to
the boosting family. This is somehow surprising, (i) because of the high applica-
tive interest of HTC, (ii) because boosting algorithms are well-known for their

1 http://info.acm.org/class/1998/ccs98.html

F. Crestani, P. Ferragina, and M. Sanderson (Eds.): SPIRE 2006, LNCS 4209, pp. 13–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 A. Esuli, T. Fagni, and F. Sebastiani

interesting theoretical properties and for their high accuracy, and (iii) because,
given their relatively high computational cost, they would definitely benefit by
the added efficiency that consideration of the hierarchical structure can bring
about.

In this paper we try to fill this gap by proposing TreeBoost.MH, a multi-
label HTC algorithm that consists of a hierarchical variant of AdaBoost.MH,
a very well-known member of the family of boosting algorithms; here, multi-label
(ML) means that a document can belong to zero, one, or several categories at
the same time. TreeBoost.MH embodies several intuitions that had arisen
before within HTC: e.g. the intuitions that both feature selection and the selec-
tion of negative training examples should be performed “locally”, i.e. by paying
attention to the topology of the classification scheme. TreeBoost.MH also
incorporates the novel intuition that the weight distribution that boosting al-
gorithms update at every boosting round should likewise be updated “locally”.
All these intuitions are embodied within TreeBoost.MH in an elegant and
simple way, i.e. by defining TreeBoost.MH as a recursive algorithm that uses
AdaBoost.MH as its base step, and that recurs over the tree structure.

The paper is structured as follows. In Section 2 we give a concise descrip-
tion of boosting and the AdaBoost.MH algorithm. Section 3 describes Tree-

Boost.MH. In Section 4 we present experiments comparing AdaBoost.MH

and TreeBoost.MH on two well-known HTC benchmarks. Section 5 discusses
related work. Section 6 concludes.

2 An Introduction to Boosting and AdaBoost.MH

AdaBoost.MH [12] is a boosting algorithm, i.e. an algorithm that generates
a highly accurate classifier Φ̂ (also called final hypothesis) by combining a set
of moderately accurate classifiers Φ̂1, . . . , Φ̂S (also called weak hypotheses). The
input to the algorithm is a set of pairs C = {〈c1, T r+(c1)〉, . . . , 〈cm, T r+(cm)〉}
each consisting of a category and its set of positive training examples. For each
cj ∈ C, we define the set Tr−(cj) of its negative training examples simply as
the union of the sets of the positive training examples of the other categories,
minus Tr+(cj).

AdaBoost.MH works by iteratively calling a weak learner to generate a
sequence Φ̂1, . . . , Φ̂S of weak hypotheses; at the end of the iteration the final
hypothesis Φ̂ is obtained as a sum Φ̂ =

∑S
s=1 Φ̂s of these weak hypotheses. A

weak hypothesis is a function Φ̂s : D×C → R. We interpret the sign of Φ̂s(di, cj)
as the prediction of Φ̂s on whether di belongs to cj, i.e. Φ̂s(di, cj) > 0 means
that di is believed to belong to cj while Φ̂s(di, cj) < 0 means it is believed not
to belong to cj . We instead interpret the absolute value of Φ̂s(di, cj) (indicated
by |Φ̂s(di, cj)|) as the strength of this belief.

At each iteration s AdaBoost.MH tests the effectiveness of the newly gen-
erated weak hypothesis Φ̂s on the training set and uses the results to update a
distribution Ds of weights on the training pairs 〈di, cj〉. The weight Ds+1(di, cj)
is meant to capture how effective Φ̂1, . . . , Φ̂s have been in correctly predicting

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 15

whether the training document di belongs to category cj or not. By passing
(together with the training set Tr) this distribution to the weak learner, Ad-

aBoost.MH forces this latter to generate a new weak hypothesis Φ̂s+1 that
concentrates on the pairs with the highest weight, i.e. those that had proven
harder to classify for the previous weak hypotheses.

The initial distribution D1 is uniform. At each iteration s all the weights
Ds(di, cj) are updated to Ds+1(di, cj) according to the rule

Ds+1(di, cj) =
Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj))

Zs
(1)

where the target function Φ(di, cj) is defined to be 1 if cj ∈ Ci and -1 otherwise,
and Zs =

∑g
i=1

∑m
j=1 Ds(di, cj) exp(−Φ(di, cj) · Φ̂s(di, cj)) is a normalization

factor chosen so that
∑g

i=1
∑m

j=1 Ds+1(di, cj) = 1, i.e. so that Ds+1 is in fact
a distribution. Equation 1 is such that the weight assigned to a pair 〈di, cj〉
misclassified by Φ̂s is increased, as for such a pair Φ(di, cj) and Φ̂s(di, cj) have
different signs and the factor Φ(di, cj) · Φ̂s(di, cj) is thus negative; likewise, the
weight assigned to a pair correctly classified by Φ̂s is decreased.

2.1 Choosing the Weak Hypotheses

In AdaBoost.MH each document di is represented as a vector 〈w1i, . . . , wri〉
of r binary weights, where wki = 1 (resp. wki = 0) means that term tk occurs
(resp. does not occur) in di; T = {t1, . . . , tr} is the set of terms that occur in at
least one document in Tr.

In AdaBoost.MH the weak hypotheses generated by the weak learner at
iteration s are decision stumps of the form

Φ̂s(di, cj) =
{

a0j if wki = 0
a1j if wki = 1 (2)

where tk (called the pivot term of Φ̂s) belongs to T , and a0j and a1j are real-
valued constants. The choices for tk, a0j and a1j are in general different for each
iteration s, and are made according to an error-minimization policy described
in the rest of this section.

Schapire and Singer [13] have proven that a reasonable (although suboptimal)
way to maximize the effectiveness of the final hypothesis Φ̂ is to “greedily” choose
each weak hypothesis Φ̂s (and thus its parameters tk, a0j and a1j) in such a way
as to minimize Zs.

Schapire and Singer [12] define three different variants of AdaBoost.MH,
corresponding to three different methods for making these choices. In this paper
we concentrate on one of them, AdaBoost.MH with real-valued predictions
(hereafter simply called AdaBoost.MH), since it is the one that, in [12], has
been experimented most thoroughly and has given the best results:

16 A. Esuli, T. Fagni, and F. Sebastiani

Algorithm 1 (The AdaBoost.MH weak learner)

1. For each term tk ∈ {t1, . . . , tr} select, among all weak hypotheses Φ̂ that
have tk as the “pivot term”, the one (indicated by Φ̂best(k)) for which Zs

is minimum.
2. Among all the hypotheses Φ̂best(1), . . . , Φ̂best(r) selected for the r different

terms in Step 1, select the one (indicated by Φ̂s) for which Zs is minimum.

Step 1 is clearly the key step, since there are a non-enumerable set of weak
hypotheses with tk as the pivot. Schapire and Singer [13] have proven that,
given term tk and category cj ,

Φ̂best(k)(di, cj) =

⎧
⎪⎨

⎪⎩

1
2 ln

W 0jk
+1

W 0jk
−1

if wki = 0

1
2 ln

W 1jk
+1

W 1jk
−1

if wki = 1
(3)

where W xjk
b =

∑g
i=1 Ds(di, cj) · [[wki = x]] · [[Φ(di, cj) = b]] for b ∈ {1, −1},

x ∈ {0, 1}, j ∈ {1, . . . , m} and k ∈ {1, . . . , r}, and where [[π]] indicates the
function that returns 1 if π is true and 0 otherwise.

3 A Hierarchical Boosting Algorithm Multi-label TC

In this section we describe a version of AdaBoost.MH, called TreeBoost.MH,
that is explicitly designed to work on tree-structured sets of categories, and is capa-
ble of leveraging on the information inherent in this structure. TreeBoost.MH

is fully illustrated in Figure 1.
Let us first fix some notation and definitions. Let H be a tree-structured

set of categories, let r be its root category, and let L = 〈〈l1, T r+(l1)〉, . . . ,
〈lm, T r+(lm)〉〉〉 be the set of leaf categories of H together with their sets of
positive training examples. For each category cj ∈ H , we will use the following
abbreviations:

Symbol Meaning
↑(cj) the parent category of cj

↓(cj) the set of children categories of cj

⇑(cj) the set of ancestor categories of cj

⇓(cj) the set of descendant categories of cj

↔(cj) the set of sibling categories of cj

We assume that documents can belong to zero, one, or several leaf categories
in L, and that leaf categories are the only categories to which documents can
belong (so that categories corresponding to internal nodes are just aggregations
of “real” categories). The notion of set of positive/negative training examples is
naturally extended to nonleaf categories via the following definition.

Definition 1. Given a nonleaf category cj, its set of positive training examples
Tr+(cj) is defined as Tr+(cj) =

⋃
c∈⇓(cj) Tr+(c), i.e. as the union of the sets of

positive training examples of all its descendant (leaf) categories.

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 17

1 Input: A triplet 〈H, r, L〉 where
2 H is a tree-structured set of categories,
3 r is the root category of H,
4 L = 〈〈l1, T r+(l1)〉, . . . , 〈lm, T r+(lm)〉〉〉 is the (possibly empty) set of leaf categories of H
5 together with their sets of positive training examples;
6 Body: if r is a leaf category then do nothing
7 else begin
8 let ↓(r) = {〈↓1(r), T r+(↓1(r))〉 . . . , 〈↓k(r)(r), T r+(↓k(r)(r))〉} be the k(r) children categories of r
9 together with their sets of positive training examples;

10 run a ML feature selection algorithm on ↓(r);
11 run AdaBoost.MH on ↓(r);
12 for q = 1, . . . , k(r) do
13 begin
14 let Tq be the subtree of H rooted at ↓q(r);
15 let Lq = {〈lq(1), T r+(lq(1))〉, . . . , 〈lq(z), T r+(lq(z))〉} be the (possibly empty)
16 set of leaf categories of Tq together with their sets of positive training examples;
17 run TreeBoost.MH on 〈Tq, ↓q(r), Lq〉;
18 end
19 end
20 Output: For each nonleaf category ct ∈ H, a final hypothesis Φ̂(t)(d, c) =

PS
s=1 Φ̂

(t)
s (d, c) for c ∈↓(ct)

Fig. 1. The TreeBoost.MH algorithm

Definition 2. Given a nonleaf category cj, its set of negative training exam-

ples Tr−(cj) is defined as Tr−(cj) =
(⋃

c∈↔(cj) Tr+(c)
)

− Tr+(cj), i.e. as the
union of the sets of positive training examples of all its sibling (leaf or nonleaf)
categories, minus its own positive training examples.

3.1 The Rationale

TreeBoost.MH embodies several intuitions that had arisen before within HTC.
The first, fairly obvious intuition (which lies at the basis of practically all

HTC algorithms proposed in the literature) is that, in a hierarchical context,
the classification of a document di is to be seen as a descent through the hi-
erarchy, from the root to the leaf categories where di is deemed to belong. In
ML classification, this means that each nonroot category cj has an associated
binary classifier Φ̂j which acts as a “filter” that prevents unsuitable documents
to percolate to lower levels. All test documents that a classifier Φ̂j deems to
belong to cj are passed as input to all the binary classifiers corresponding to the
categories in ↓(cj), while the documents that Φ̂j deems not to belong to cj are
“blocked” and analysed no further. Each document may thus reach zero, one, or
several leaf categories, and is thus classified under them.

The second intuition is that the training of Φ̂j should be performed “locally”,
i.e. by paying attention to the topology of the classification scheme. To see
this, note that, during classification, if the classifier for ↑ (cj) has performed
correctly, Φ̂j will only (or mostly) be presented with documents that belong
to the subtree rooted in ↑ (cj), i.e. with documents that belong to cj and/or
to some of the categories in ↔(cj). As a result, the training of Φ̂j should be
performed by using, as negative training examples, the union of the positive
training examples of the categories in ↔(cj) (with the obvious exception of the

18 A. Esuli, T. Fagni, and F. Sebastiani

documents that are also positive training examples of cj); in particular, training
documents that only belong to leaf categories other than those in ⇓(cj) need not
be used. The rationale of this choice is that the chosen documents are “quasi-
positive” examples of cj [14], i.e. are the negative examples that are closest to
the boundary between the positive and the negative region of cj (a notion akin to
that of “support vectors” in SVMs), and are thus the most informative negative
examples that can be used in training. This is beneficial also from the standpoint
of (both training and classification time) efficiency, since fewer training examples
and fewer features are involved. This intuition lies at the basis of Definition 2
above; in a similar form, it had first been presented in [15].

The third intuition is similar, i.e. that feature selection should also be per-
formed “locally”, by paying attention to the topology of the classification scheme.
As above, if the classifier for ↑ (cj) has performed correctly, Φ̂j will only (or
mostly) be presented with documents that belong to the subtree rooted in ↑(cj).
As a consequence, for the classifiers corresponding to cj and its siblings, it is
cost-effective to employ features that are useful in discriminating among them,
and only among them; features that discriminate among categories lying outside
the subtree rooted in ↑(cj) are too general, and features that discriminate among
the subcategories of cj , or among the subcategories of one of its siblings, are too
specific. This intuition, albeit in a different form, was first presented in [2].

TreeBoost.MH also embodies the novel intuition that the weight distrib-
ution that boosting algorithms update at every boosting round should likewise
be updated “locally”. In fact, the two previously discussed intuitions indicate
that hierarchical ML classification is best understood as consisting of several
independent (flat) ML classification problems, one for each internal node of the
hierarchy: for each such node cj we must generate a number of binary classifiers,
one for each cq ∈↓(cj). In a boosting context, this means that several independent
distributions, each one “local” to an internal node and its children, should be
generated and updated by the process. In this way, the “difficulty” of a category
cq will only matter relative to the difficulty of its sibling categories.

3.2 The Algorithm

TreeBoost.MH incorporates these four intuitions by factoring the hierarchical
ML classification problem into several “flat” ML classification problems, one for
every internal node in the tree. TreeBoost.MH learns in a recursive fashion, by
identifying internal nodes cj and calling AdaBoost.MH to generate a ML (flat)
classifier for the set of categories ↓(cj). Alternatively (and more conveniently),
this process may be viewed as generating, for each nonroot category cj ∈ H ,
a binary classifier Φ̂ for cj , by means of which hierarchical classification can be
performed as described in Section 3.1.

Learning in TreeBoost.MH proceeds by first identifying whether a leaf
category has been reached (line 6 of Figure 1), in which case nothing is done,
since the classifiers are generated only at internal nodes.

If an internal node cj has been reached, a ML feature selection process may
(optionally) be run (line 10) to generate a reduced feature set on which the ML
classifier for ↓(cj) will operate. This may be dubbed a “glocal” feature selection

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 19

policy, since it takes an intermediate stand between the well-known “global”
policy (in which the same set of features is selected for all the categories in H)
and “local” policy (in which a different set of features is chosen for each different
category). The glocal policy selects a different set of features for each maximal
set of sibling categories in H , thus implementing a view of feature selection as
described in Section 3.12. Any of the standard feature scoring functions (e.g.
information gain, chi-square) can be used, as well as any of the standard feature
score globalization methods (e.g. max, weighted average, Forman’s [16] round
robin). Note that all these functions require a precise notion of what the positive
and negative training examples of a category are; this notion is well-defined for
leaf categories (see beginning of Section 2), and is catered for by Definitions 1
and 2 for internal node categories.

After the reduced feature set has been identified, TreeBoost.MH calls upon
AdaBoost.MH (line 11) to solve a ML (flat) classification problem for the
categories in ↓(cj); here too, what counts as a positive and as a negative training
example of a category comes from Definitions 1 and 2, which implements the
“quasi-positive” policy for the choice of negative training examples discussed
in Section 3.1. Note that restricting the AdaBoost.MH call to the categories
in ↓(cj) implements the view, discussed in Section 3.1, of several independent,
“local” distributions being generated and updated during the boosting process.

Finally, after the ML classifier for ↓(cj) has been generated, for each cate-
gory cq ∈↓(cj) a recursive call to TreeBoost.MH is issued (lines 12–18) that
processes the subtree rooted in cq in the same way. The final result is a hierarchi-
cal ML classifier in the form of a tree of binary classifiers, one for each nonroot
node, each consisting of a committee of S decision stumps.

In an extended version of this paper [17] we discuss the computational cost of
TreeBoost.MH, proving that (at least in the idealized case of a “fully grown”,
perfectly balanced tree of constant ariety a):

– at training time TreeBoost.MH is O(grah), while AdaBoost.MH is
O(grm);

– at testing time TreeBoost.MH is O(Sah), while AdaBoost.MH is O(Sm).

Since m = ah, this means that TreeBoost.MH is cheaper than AdaBoost.MH

by an exponential factor, both at training time and at testing time.

4 Experiments

4.1 Experimental Setting

The first benchmark we have used in our experiments is the “Reuters-21578,
Distribution 1.0” corpus3. In origin, the Reuters-21578 category set is not
2 Note that a local policy would also implement this view, but is not made possible by

AdaBoost.MH, since this latter uses the same set of features for all the categories
involved in the ML classification problem. This means that we need to use the same
set of features for all categories in ↓(cj).

3 http://www.daviddlewis.com/resources/testcollections/~reuters21578/

20 A. Esuli, T. Fagni, and F. Sebastiani

hierarchically structured, and is thus not suitable “as is” for HTC experiments;
we have thus used a hierarchical version of it generated in [5] by the application of
hierarchical agglomerative clustering on the 90 Reuters-21578 categories that
have at least one positive training example and one positive test example. The
original Reuters-21578 categories are thus “leaf” categories in the resulting
hierarchy, and are clustered into four “macro-categories” whose parent category
is the root of the tree. Conforming to the experiments of [5], we have used
(according to the ModApte split) the 7,770 training examples and 3,299 test
examples that are labelled by at least one of the selected categories.

The second benchmark we have used is Reuters Corpus Volume 1 ver-
sion 2 (RCV1-v2)4, consisting of 804,414 news stories. In our experiments we
have used the “LYRL2004” split defined in [18], in which the (chronologically)
first 23,149 documents are used for training and the other 781,265 are used for
testing. Out of the 103 “Topic” categories, in our experiments we have restricted
our attention to the 101 categories with at least one positive training example.
The RCV1-v2 hierarchy is four levels deep (including the root, to which we
conventionally assign level 0); there are four internal nodes at level 1, and the
leaves are all at the levels 2 and 3.

In all the experiments discussed in this section, punctuation has been re-
moved, all letters have been converted to lowercase, numbers have been removed,
stop words have been removed, and stemming has been performed by means of
Porter’s stemmer. As a measure of effectiveness that combines the contributions
of precision (π) and recall (ρ) we have used the well-known F1 function, defined
as F1 = 2πρ

π+ρ = 2TP
2TP+FP+FN , where TP , FP , and FN stand for the numbers

of true positives, false positives, and false negatives, respectively. We compute
both microaveraged F1 (denoted by Fμ

1) and macroaveraged F1 (FM
1). Fμ

1 is
obtained by (i) computing the category-specific values TPi, (ii) obtaining TP
as the sum of the TPi’s (same for FP and FN), and then (iii) applying the
F1 = 2πρ

π+ρ formula. FM
1 is obtained by first computing the category-specific F1

values and then averaging them across the ci’s.

4.2 Results

The results of our experiments are reported in Table 1.
In a first experiment we have comparedAdaBoost.MH and TreeBoost.MH

using a full feature set. We have then switched to reduced feature sets, obtained
according to a “global” feature selection policy in which (i) feature-category pairs
have been scored by means of information gain, defined as IG(tk, ci) =

∑
c∈{ci,ci}∑

t∈{tk,tk} P (t, c) · log P (t,c)
P (t)·P (c) and (ii) the final set of features has been chosen

according to Forman’s round robin technique, which consists in picking, for each
category ci, the v features with the highest IG(tk, ci) value, and pooling all of
them together into a category-independent set [16]. This set thus contains a num-
ber of features q ≤ vm, where m is the number of categories; it usually contains
strictly fewer than them, since some features are among the best v features for
more than one category. We have set v to 60 for Reuters-21578 and to 43 for
4 http://trec.nist.gov/data/reuters/reuters.html

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 21

Table 1. AdaBoost.MH and TreeBoost.MH on Reuters-21578 (top 5 rows) and
RCV1-v2 (bottom 5 rows). In each square, the first figure from top is F μ

1 , the second
is F M

1 , the third is training time (inclusive of the time required to perform feature
selection, if any), and the fourth is testing time.

5 10 20 50 100 200 500 1000
iterations iterations iterations iterations iterations iterations iterations iterations

.533 .597 .664 .724 .783 .798 .804 .808
AdaBoost.MH .033 .075 .160 .255 .332 .361 .377 .379

(Full) 34.0 68.1 136.3 340.7 681.5 1362.9 3407.3 6814.6
11.1 14.3 18.2 35.1 66.2 129.9 274.0 464.3

.596 (+11.9%) .699 (+17.2%) .745 (+12.2%) .795 (+9.9%) .810 (+3.5%) .827 (+3.7%) .830 (+3.1%) .826 (+2.3%)
TreeBoost.MH .100 (+197.4%) .187 (+148.4%) .286 (+78.9%) .416 (+62.6%) .425 (+28.2%) .454 (+25.6%) .460 (+22.0%) .479 (+26.4%)

(Full) 16.9 (-50.4%) 33.8 (-50.4%) 67.6 (-50.4%) 169.0 (-50.4%) 337.9 (-50.4%) 675.8 (-50.4%) 1689.4 (-50.4%) 3378.9 (-50.4%)
13.0 (+16.8%) 12.6 (-11.8%) 17.2 (-5.5%) 20.6 (-41.4%) 29.9 (-54.9%) 48.5 (-62.7%) 96.6 (-64.7%) 151.3 (-67.4%)

.533 .597 .664 .724 .783 .799 .811 .801
AdaBoost.MH .034 .075 .160 .256 .332 .354 .373 .362

(Global) 24.6 49.2 98.4 246.1 492.1 984.3 2460.8 4921.5
8.8 12.4 17.0 32.8 59.6 112.2 255.2 386.0

.596 (+11.9%) .699 (+17.2%) .744 (+11.9%) .800 (+10.5%) .809 (+3.4%) .815 (+2.0%) .828 (+2.1%) .821 (+2.5%)
TreeBoost.MH .100 (+197.4%) .187 (+148.4%) .285 (+78%) .437 (+70.8%) .427 (+28.7%) .457 (+28.8%) .457 (+22.4%) .473 (+30.6%)

(Global) 11.5 (-53.4%) 23.0 (-53.4%) 45.9 (-53.4%) 114.7 (-53.4%) 229.5 (-53.4%) 459.0 (-53.4%) 1147.4 (-53.4%) 2294.7 (-53.4%)
9.1 (+3.2%) 9.6 (-22.1%) 11.3 (-33.5%) 17.2 (-47.7%) 26.3 (-55.9%) 42.4 (-62.2%) 82.3 (-67.7%) 131.3 (-66.0%)

.596 (+11.9%) .699 (+17.2%) .744 (+11.9%) .794 (+9.7%) .812 (+3.8%) .817 (+2.2%) .824 (+1.6%) .825 (+3.0%)
TreeBoost.MH .100 (+197.4%) .187 (+148.4%) .285 (+77.9%) .401 (+56.9%) .430 (+29.8%) .460 (+29.8%) .465 (+24.7%) .465 (+28.3%)

(Glocal) 12.1 (-50.7%) 24.2 (-50.7%) 48.5 (-50.7%) 121.2 (-50.7%) 242.5 (-50.7%) 485.0 (-50.7%) 1212.4 (-50.7%) 2424.8 (-50.7%)
10.7 (+21.6%) 14.9 (+20.9%) 14.1 (-16.7%) 23.0 (-29.8%) 28.3 (-52.4%) 46.2 (-58.9%) 94.6 (-62.9%) 142.9 (-63.0%)

.361 .406 .479 .587 .650 .701 .735 .745
AdaBoost.MH .037 .070 .131 .239 .333 .396 .435 .442

(Full) 181.3 362.7 725.3 1813.3 3626.5 7253.1 18132.7 36265.5
3346.2 3576.4 5168.2 9524.7 16827.2 33608.9 83951.2 170720.3

.391 (+8.4%) .460 (+13.3%) .543 (+13.5%) .658 (+12.1%) .705 (+8.4%) .734 (+4.6%) .752 (+2.3%) .761 (+2.1%)
TreeBoost.MH .097 (+159.0%) .128 (+81.5%) .211 (+60.8%) .341 (+42.8%) .409 (+22.7%) .447 (+12.9%) .476 (+9.4%) .486 (+9.8%)

(Full) 78.3 (-56.8%) 156.5 (-56.8%) 313.1 (-56.8%) 782.7 (-56.8%) 1565.3 (-56.8%) 3130.6 (-56.8%) 7826.6 (-56.8%) 15653.1 (-56.8%)
2774.5 (-17.1%) 2813.5 (-21.3%) 3081.1 (-40.4%) 3963.2 (-58.4%) 6044.2 (-64.1%) 9328.3 (-72.2%) 21847.4 (-74.0%) 38342.9 (-77.5%)

.361 .406 .479 .587 .650 .700 .736 .749
AdaBoost.MH .037 .070 .131 .239 .332 .398 .443 .457

(Global) 107.8 215.5 431.1 1077.7 2155.5 4310.9 10777.3 21554.7
1598.4 2223.7 3741.0 8012.8 16206.9 31907.7 74292.3 147354.1

.391 (+8.4%) .460 (+13.3%) .545 (+13.8%) .657 (+12.0%) .702 (+8.0%) .732 (+4.6%) .753 (+2.3%) .760 (+1.4%)
TreeBoost.MH .097 (+159.0%) .128 (+81.6%) .213 (+62.6%) .340 (+42.4%) .409 (+23.4%) .448 (+12.5%) .484 (+9.4%) .495 (+8.3%)

(Global) 33.8 (-68.7%) 67.5 (-68.7%) 135.1 (-68.7%) 337.6 (-68.7%) 675.3 (-68.7%) 1350.5 (-68.7%) 3376.4 (-68.7%) 6752.8 (-68.7%)
1830.2 (+14.5%) 1422.0 (-36.1%) 1901.0 (-49.2%) 2772.1 (-65.4%) 4836.0 (-70.2%) 8156.6 (-74.4%) 18384.5 (-75.3%) 33648.3 (-77.2%)

.391 (+8.4%) .460 (+13.3%) .543 (+13.5%) .658 (+12.1%) .703 (+8.1%) .735 (+5.1%) .753 (+2.3%) .762 (+1.7%)
TreeBoost.MH .097 (+159.0%) .128 (+81.5%) .211 (+61.1%) .340 (+42.6%) .408 (+23.0%) .450 (+12.9%) .476 (+7.6%) .490 (+7.2%)

(Glocal) 41.3 (-61.7%) 82.6 (-61.7%) 165.3 (-61.7%) 413.1 (-61.7%) 826.3 (-61.7%) 1652.6 (-61.7%) 4131.4 (-61.7%) 8268.9 (-61.7%)
2374.9 (+48.6%) 2432.7 (+9.4%) 2499.9 (-33.2%) 3645.9 (-54.5%) 5020.3 (-69.0%) 8372.9 (-73.8%) 18173.9 (-75.5%) 33149.0 (-77.5%)

RCV1-v2, which are the values that, for each corpora, best approximate a total
number of features of 2,000; in fact, the reduced feature sets consist of 2,012 fea-
tures for Reuters-21578 (11% of the 18,177 original ones) and 2,029 for RCV1-

v2 (3.7% of the 55,051 original ones).
We have also run an experiment in which we have used the “glocal” feature

selection policy described in Section 3.2, consisting in selecting a different feature
subset (of the same cardinalities as in the global policy) for the set of children
of each different internal node. Note that the results obtained by means of this
policy are reported only for TreeBoost.MH, since this policy obviously is not
applicable to AdaBoost.MH.

We will now comment on the Reuters-21578 results5; the RCV1-v2 are
qualitatively similar. The first observation we can make is that, in switching from
AdaBoost.MH to TreeBoost.MH, effectiveness improves substantially. Fμ

1
improves from +2.3% to +17.2%, depending on the number S of boosting iter-
ations. FM

1 improves even more substantially, from +22.0% to +197.4%; this

5 The reader might notice that the best performance we have obtained from Ad-

aBoost.MH on Reuters-21578 (F μ
1 = .808) is inferior to the one reported in [12]

for the same algorithm (F μ
1 = .851). There are several reasons for this: (a) [12] actu-

ally uses a different, much older version of this collection, called Reuters-21450 [19];
(b) [12] only uses the 93 categories which have at least 2 positive training examples
and 1 positive test example, while we also use the categories that have just 1 positive
training example and those that have no positive test example. This makes the two
sets of AdaBoost.MH results difficult to compare.

22 A. Esuli, T. Fagni, and F. Sebastiani

means that TreeBoost.MH is especially suited to categorization problems
in which the distribution of training examples across the categories is highly
skewed. For both Fμ

1 and FM
1 , the improvements tend to be more substan-

tial for low values of S, showing that TreeBoost.MH converges to optimum
performance more rapidly than AdaBoost.MH. Altogether, these effectiveness
improvements are somehow surprising, since it is well-known that hierarchical
TC can introduce a deterioration of effectiveness due to classification errors
made high up in the hierarchy, which cannot be recovered anymore [2, 4]. The
improvements thus show that the “filters” placed at the internal nodes work
well, likely due to the fact that they their training benefits from using only the
“quasi-positive” examples of local interest as negative training examples.

In terms of efficiency, we can observe that training time is +50.4% smaller,
irrespectively of the number of iterations, a reduction that confirms the the-
oretical findings discussed in Section 3.2 (and that might likely be even more
substantial in classification problems characterized by a deeper, more articulated
hierarchy). Classification time is also generally reduced; aside from an isolated
case in which it increases by 16.8%, it is reduced from +5.5% to +67.4%, with
higher reductions being obtained for high values of S; this is likely due to the fact
that, since high values of S bring about more effective classifiers, the classifiers
placed at internal nodes are more effective at “blocking” unsuitable documents
from percolating down to leaves which would reject them anyway.

The experiments run after global feature selection qualitatively confirm the
results above. Note that the effectiveness values are practically unchanged wrt
the full feature set experiment; this is especially noteworthy for the RCV1-

v2 experiments, in which more than 96% of the original features have been
discarded with no loss in effectiveness. Effectiveness does not change also when
using “glocal” feature selection. This is somehow surprising, since an effectiveness
improvement might have been expected here, due to the generation of feature
sets customized to each internal node. It is thus likely that the values of v chosen
when applying the global policy were large enough to allow the inclusion, for each
internal node, of enough features customized to it.

5 Related Work

HTC was first tackled in [9], in the context of a TC system based on neural
networks. The intuition that it could be useful to perform feature selection locally
by exploiting the topology of the tree is originally due to [2]. However, this work
dealt with 1-of-n text categorization, which means that feature selection was
performed relative to the set of children of each internal node; given that we are
in a m-of-n classification context, we instead do it relative to each individual
child of any internal node. The intuition that the negative training examples for
training the classifier for category cj could be limited to the positive training
examples of categories close to cj in the tree is due to [15]. The notion that, in a
m-of-n classification context, classifiers at internal nodes act as “filters” informs
much of the HTC literature, and is explicitly discussed at least in [7], which
proposes a HTC system based on neural networks.

TreeBoost.MH: A Boosting Algorithm for Multi-label HTC 23

Other works in HTC focus on other specific aspects of the learning task. For
instance, the “shrinkage” method presented in [4] attempts to improve parameter
estimation for data-sparse leaf categories in a 1-of-n HTC system based on a
näıve Bayesian method. Incidentally, the näıve Bayesian approach seems to have
been the most popular among HTC researchers, since several other HTC models
are hierarchical variations of näıve Bayesian learning algorithms [1, 3, 5, 6].

6 Conclusion

We have presented TreeBoost.MH, a recursive algorithm for hierarchical text
categorization that uses AdaBoost.MH as its base step and that recurs over
the category tree structure. We have given complexity results in which we show
that TreeBoost.MH, by leveraging on the hierarchical structure of the cate-
gory tree, is exponentially cheaper to train and to test than AdaBoost.MH.
These theoretical intuitions have been confirmed by thorough empirical testing
on two standard benchmarks, on which TreeBoost.MH has brought about sub-
stantial savings at both learning time and classification time. TreeBoost.MH

has also shown to bring about substantial improvements in effectiveness wrt
AdaBoost.MH, especially in terms of macroaveraged effectiveness; this fea-
ture makes it extremely suitable to categorization problems characterized by a
skewed distribution of the positive training examples across the categories.

References

1. Chakrabarti, S., Dom, B.E., Agrawal, R., Raghavan, P.: Scalable feature selec-
tion, classification and signature generation for organizing large text databases
into hierarchical topic taxonomies. Journal of Very Large Data Bases 7(3) (1998)
163–178

2. Koller, D., Sahami, M.: Hierarchically classifying documents using very few
words. In: Proceedings of the 14th International Conference on Machine Learning
(ICML’97), Nashville, US (1997) 170–178

3. Gaussier, É., Goutte, C., Popat, K., Chen, F.: A hierarchical model for clustering
and categorising documents. In: Proceedings of the 24th European Colloquium on
Information Retrieval Research (ECIR’02), Glasgow, UK (2002) 229–247

4. McCallum, A.K., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classifica-
tion by shrinkage in a hierarchy of classes. In: Proceedings of the 15th International
Conference on Machine Learning (ICML’98), Madison, US (1998) 359–367

5. Toutanova, K., Chen, F., Popat, K., Hofmann, T.: Text classification in a hier-
archical mixture model for small training sets. In: Proceedings of the 10th ACM
International Conference on Information and Knowledge Management (CIKM’01),
Atlanta, US (2001) 105–113

6. Vinokourov, A., Girolami, M.: A probabilistic framework for the hierarchic organi-
sation and classification of document collections. Journal of Intelligent Information
Systems 18(2/3) (2002) 153–172

7. Ruiz, M., Srinivasan, P.: Hierarchical text classification using neural networks.
Information Retrieval 5(1) (2002) 87–118

8. Weigend, A.S., Wiener, E.D., Pedersen, J.O.: Exploiting hierarchy in text catego-
rization. Information Retrieval 1(3) (1999) 193–216

24 A. Esuli, T. Fagni, and F. Sebastiani

9. Wiener, E.D., Pedersen, J.O., Weigend, A.S.: A neural network approach to topic
spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis
and Information Retrieval (SDAIR’95), Las Vegas, US (1995) 317–332

10. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: Proceed-
ings of the 23rd ACM International Conference on Research and Development in
Information Retrieval (SIGIR’00), Athens, GR (2000) 256–263

11. Yang, Y., Zhang, J., Kisiel, B.: A scalability analysis of classifiers in text catego-
rization. In: Proceedings of the 26th ACM International Conference on Research
and Development in Information Retrieval (SIGIR’03), Toronto, CA (2003) 96–103

12. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text cate-
gorization. Machine Learning 39(2/3) (2000) 135–168

13. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3) (1999) 297–336

14. Schapire, R.E., Singer, Y., Singhal, A.: Boosting and Rocchio applied to text
filtering. In: Proceedings of the 21st ACM International Conference on Research
and Development in Information Retrieval (SIGIR’98), Melbourne, AU (1998) 215–
223

15. Ng, H.T., Goh, W.B., Low, K.L.: Feature selection, perceptron learning, and a
usability case study for text categorization. In: Proceedings of the 20th ACM
International Conference on Research and Development in Information Retrieval
(SIGIR’97), Philadelphia, US (1997) 67–73

16. Forman, G.: A pitfall and solution in multi-class feature selection for text classifi-
cation. In: Proceedings of the 21st International Conference on Machine Learning
(ICML’04), Banff, CA (2004)

17. Esuli, A., Fagni, T., Sebastiani, F.: TreeBoost.MH: A boosting algorithm for multi-
label hierarchical text categorization. Technical Report 2006-TR-56, Istituto di
Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa,
IT (2006) Submitted for publication.

18. Lewis, D.D., Li, F., Rose, T., Yang, Y.: RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research 5 (2004) 361–397

19. Apté, C., Damerau, F.J., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems 12(3) (1994) 233–251

	Introduction
	An Introduction to Boosting and AdaBoost.MH
	Choosing the Weak Hypotheses

	A Hierarchical Boosting Algorithm Multi-label TC
	The Rationale
	The Algorithm

	Experiments
	Experimental Setting
	Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

