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Abstract

In this work we investigate the usefulness of
n-grams for document indexing in text cat-
egorization (TC). We call n-gram a set gk

of n word stems, and we say that gk oc-
curs in a document dj when a sequence of
words appears in dj that, after stop word re-
moval and stemming, consists exactly of the
n stems in gk, in some order. Previous re-
searches have investigated the use of n-grams
(or some variant of them) in the context of
specific learning algorithms, and thus have
not obtained general answers on their useful-
ness for TC. In this work we investigate the
usefulness of n-grams in TC independently
of any specific learning algorithm. We do so
by applying feature selection to the pool of
all k-grams (k ≤ n), and checking how many
n-grams score high enough to be selected in
the top σ k-grams. We report the results of
our experiments, using various feature selec-
tion measures and varying values of σ, per-
formed on the Reuters-21578 standard TC
benchmark. We also report results of making
actual use of the selected n-grams in the con-
text of a linear classifier induced by means of
the Rocchio method.

1 Introduction

A key issue for information retrieval (IR) and all other
content-based text management applications is docu-
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ment indexing, i.e. the task of automatically construct-
ing an internal representation of a text dj that (i) be
amenable to interpretation by the document manage-
ment algorithms, and (ii) compactly capture the mean-
ing of dj . The choice of a representation format for
text depends on what one regards as (a) the mean-
ingful textual units (the problem of lexical semantics)
and (b) the meaningful natural language rules for the
combination of the meanings that these units convey
(the problem of compositional semantics). Tradition-
ally, IR has concentrated on issue (a) and almost disre-
garded issue (b), assuming that a good representation
for a document dj may be obtained by simply taking
into account whether and how frequently a word tk
appears in dj and in the document collection, thus dis-
regarding the syntactic, semantic and pragmatic con-
texts of such occurrences. This has given rise to the
so-called bag of words approach to indexing, according
to which a text dj is represented as a vector of weights
dj = 〈w1j , . . . , wrj〉, where r is the number of words
that occur at least once in the document collection and
0 ≤ wkj ≤ 1 represents, loosely speaking, how much
word tk contributes to the semantics of document dj .
Weights 0 ≤ wkj ≤ 1 are computed according to the
frequency of tk in dj and in the collection under con-
sideration. Variants of the bag of words approach are
obtained by using word stems instead of words [11],
or by disregarding frequency issues and simply using a
binary assignment for wkj based on either the presence
or the absence of tk in dj (the set of words approach).

We will hereafter speak of a vector of features as a neu-
tral expression to indicate a vector of weighted words,
or stems, or whatever characteristics of a document
one might decide to use for the representation. Of
course, the possible choices for what counts as a fea-
ture are limited by current text processing technology,
i.e. by what can be extracted in a fully automated and
scalable way from the text itself. That is, although in



principle it would be best to identify features with the
concepts the document deals with, or with the prob-
lems the document tackles, these pieces of knowledge
are not within the reach of current knowledge extrac-
tion technology.

1.1 Phrase indexing in IR and TC

In the past a number of IR researchers have expressed
their unsatisfaction with the bag (or set) of words ap-
proach, and have tried to use notions of what a fea-
ture is that are at the same time semantically richer
and technically feasible. In particular, a number of
authors have investigated phrase indexing, i.e. the use
use of phrases, in addition to individual words, as fea-
tures. In a linguistic sense, a phrase is a textual unit
usually larger than a word but smaller than a full sen-
tence: examples of noun phrases are nuclear waste dis-
posal, the dog that crossed the street, and Bill Clinton,
while examples of verb phrases are playing ice hockey
and went to school. Hereafter, we will use the term
syntactic phrase for denoting any phrase that is such
according to a grammar of the language under consid-
eration. Using syntactic phrases in indexing seems an
interesting idea, in that

• phrases come closer than individual words or their
stems to expressing structured concepts;

• phrases have a smaller degree of ambiguity than
their constituent words, thanks to the mutual dis-
ambiguation effect of words. That is, while the
two words hand and drill are both ambiguous (e.g.
a hand of cards and shaking hands; oil drilling and
a pronunciation drill), hand drill is not, since each
of its two constituent words creates a context for
the unambiguous interpretation of the other;

• by using phrases as index terms, a document that
contains a phrase would be ranked higher than a
document that just contains its constituent words
in unrelated contexts;

• current natural language processing technology
(with special reference to part-of-speech tagging
and parsing) allows the individuation of phrases
to be performed with a good degree of robust-
ness [2, 4, 34].

Unfortunately, a number of researches that have in-
vestigated the usefulness of indexing with syntactic
phrases in IR have obtained discouraging results (see
Section 7). The likely reason for this is that, although

indexing languages based on phrases have superior se-
mantic qualities, they have inferior statistical quali-
ties with respect to indexing languages based on single
words [9, 20]. For instance, the phrase nuclear waste
disposal definitely denotes an interesting, articulated
concept, but unless it occurs frequently enough in the
document collection under consideration it is unlikely
to make an impact in terms of effectiveness. This sit-
uation is worsened by the fact that the same concept
may be triggered by related but linguistically different
units (such as disposing of nuclear waste, Dispose of your
nuclear waste!, etc.) each of which is usually consid-
ered, from the standpoint of frequency, a different unit
unless the similar underlying concept is recognized.

Also, not every syntactic phrase denotes an interesting
concept: associate professor does, but tall professor does
not, and telling a phrase that does from one that does
not is difficult (Kageura and Umino [17] call this “the
termhood problem”).

A number of researchers have attempted to find a way
out of these problems by understanding the notion of
phrase in a statistical sense, rather than in a syntactic
sense. We will call statistical phrase any sequence of
words that occur contiguously in text, and do so in a
statistically interesting way. Statistical phrases have
a number of advantages over syntactic ones: a) they
may be recognized by means of more robust and less
computationally demanding algorithms; b) the effect
of irrelevant syntactic variants can be factored out;
and c) uninteresting phrases (e.g. tall professor) tend
to be filtered out from interesting ones (e.g. associate
professor). Of course, inherent in their statistical na-
ture is the disadvantage of a non-null error rate: some
phrases are not going to be recognized as such, and
some non-phrases are instead going to be incorrectly
recognized as phrases.

This work deals with assessing the value of statistical
phrases for document indexing in the context of text
categorization (TC), the activity of inductively learn-
ing to classify natural language texts with topical cate-
gories from a pre-specified set [30]. Previous researches
have investigated the impact of statistical phrases on
TC in the context of specific learning algorithms, and
thus have not obtained general answers on their use-
fulness for TC tout court. In this work we want to an-
alyze the problem in a learner-independent way, with
the aim of obtaining an indication of the usefulness of
statistical phrases for TC that be independent of the
learning algorithm to be used. In order to do so, we
extract word sequences from a corpus of documents
and assess their value not in a “direct” way (i.e. by
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running classification experiments on a test collection)
but in an “indirect” way, i.e. by scoring the sequences
by means of a number of different feature evaluation
functions [33].

The paper is organized as follows. In Section 2 we
briefly introduce the basic notions of text categoriza-
tion. In Section 3 we define precisely our own no-
tion of statistical phrase, that we will call n-gram1. In
Section 4 we describe our learner-independent method
for the evaluation of n-grams. Section 5 describes
the results we have obtained by applying this method
on Reuters-21578, the standard benchmark of TC
research. In Section 6 we discuss a number of fur-
ther, “direct” experiments we have conducted by run-
ning the Rocchio classifier-learning algorithm on the
n-gram-based representations, and aimed at assessing
whether the results from the “indirect” experiments
are confirmed by field tests (we have started running
a similar experiment using the Ripper system [5] but
its results were not ready before printing time). Sec-
tion 7 describes some related work in phrase indexing
in IR and TC. Section 8 concludes.

2 Text categorization

Text categorization (also known as text classification,
or topic spotting) is the activity of automatically build-
ing, by means of machine learning (ML) techniques,
automatic text classifiers, i.e. programs capable of la-
belling natural language texts with thematic categories
from a predefined set C = {c1, . . . , cm}.
A frequently used approach to building a text classi-
fier for categories C = {c1, . . . , cm} is that of build-
ing m independent classifiers, each capable of deciding
whether a given document dj should or should not
be classified under category ci, for i ∈ {1, . . . ,m}2.

1We remark that the term “n-gram” is used in the text
processing literature in two quite different senses. In the
first sense it is used, as here, to indicate a set of n words
that occur sequentially in a text. In the second sense it is
used to indicate a set of n characters that occur sequen-
tially in a text, and that may be part of a word or of a se-
quence of two or more words occurring contiguously. The
latter sense is typical of the litareture on indexing noisy
texts, such as those resulting from OCR or those in Asian
languages, and will not be dealt with here.

2In this paper we make the general assumption that a
document dj can in principle belong to zero, one or many
of the categories in C; this assumption is indeed verified
in the Reuters-21578 benchmark we use for our experi-
ments. All the techniques we discuss in this paper can be
straightforwardly adapted to the other case in which each
document belongs to exactly one category.

This process requires the availability of a corpus Co =
{d′1, . . . , d′s} of manually preclassified documents, i.e.
documents such that for all i ∈ {1, . . . ,m} and for
all j ∈ {1, . . . , s} it is known whether d′j ∈ ci or not.
A general inductive process (called the learner) auto-
matically builds a classifier for category ci by learn-
ing the characteristics of ci from a training set Tr =
{d′1, . . . , d′g} ⊂ Co of documents. Once a classifier
has been built, its effectiveness (i.e. its capability to
take the right categorization decisions) may be tested
by applying it to the test set Te = {d′g+1, . . . , d

′
s} =

Co − Tr and checking the degree of correspondence
between the decisions of the automatic classifier and
those encoded in the corpus.

2.1 Feature selection

Many classifier induction methods are computation-
ally hard, and their computational cost is a function
of the length r of the vectors that represent the docu-
ments. It is thus of key importance to be able to work
with vectors shorter than r, which is usually a num-
ber in the tens of thousands or more. For this, feature
selection techniques are used to select, from the origi-
nal set of r features, a subset of r′ 
 r features that
are most useful for compactly representing the mean-
ing of the documents; the value ρ = r−r′

r is called the
reduction factor. Usually, these techniques consist in
scoring each feature by means of a feature evaluation
function (FEF) and then selecting the r′ features with
the highest score. Often, feature selection is also ben-
eficial in that it tends to reduce overfitting, i.e. the
phenomenon by which a classifier tends to be better
at classifying the data it has been trained on than at
classifying other data.

Many functions, mostly from the tradition of deci-
sion or information theory, have been used as FEFs
in TC [19, 24, 33]; some which are of interest to the
present work are illustrated in Table 1. In the third
column of this table, probabilities are interpreted on
an event space of documents (e.g. P (tk, ci) indicates
the probability that, for a random document x, fea-
ture tk does not occur in x and x belongs to cate-
gory ci), and are estimated by counting occurrences
in the training set. In the same column, every func-
tion f(tk, ci) refers to a specific category ci; in or-
der to assess the value of a feature tk in a “global”,
category-independent sense, either the weighted aver-
age favg(tk) =

∑m
i=1 f(tk, ci) · P (ci) or the maximum

fmax(tk) = maxm
i=1 f(tk, ci) of its category-specific val-

ues are usually computed.
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Function Denoted by Mathematical form

Document Frequency DF (tk, ci) P (tk|ci)

Information Gain IG(tk, ci) P (tk, ci) · log
P (tk, ci)

P (ci) · P (tk)
+ P (tk, ci) · log

P (tk, ci)

P (ci) · P (tk)

Chi-square χ2(tk, ci)
g · [P (tk, ci) · P (tk, ci) − P (tk, ci) · P (tk, ci)]

2

P (tk) · P (tk) · P (ci) · P (ci)

Odds Ratio OR(tk, ci)
P (tk|ci) · (1 − P (tk|ci))

(1 − P (tk|ci)) · P (tk|ci)

Table 1: Some feature evaluation functions used in the literature. In the χ2(tk, ci) and formula g is the cardinality
of the training set.

3 A definition of n-grams

We start by precisely characterizing what we mean by
statistical phrases. The same definition has been used
in a number of IR contexts (e.g. [3, 23]), but never in
the case of TC (see Section 7 for a detailed discussion).

Definition 1 A 1-gram (or unigram) is a word stem.
An n-gram is an alphabetically ordered sequence gk of
n unigrams. We say that an n-gram gk occurs (or
manifests itself) in a document dj when a sequence of
words appears in dj that, after stop word removal and
stemming, consists of a permutation of gk.

For instance, inform retriev is a 2-gram (or bigram);
among its possible manifestations in a text are the
expressions

(a) information retrieval
(b) retrieval of information
(c) informative retrieval
(d) the retrieving of information
(e) retrieved information
(f) retrieving information
(g) retrieves information
(h) Retrieve information!
(i)* Inform the retriever!

Note that, as evident from all these examples, stop
word removal, stemming, and alphabetical ordering
have the effect of factoring out from the notion of n-
gram a number of morphological, syntactic, and se-
mantic variations. As for morphosyntactic variations,
note that noun phrases (expressions (a) to (e)), verb
phrases (expressions (f) and (g)) and full sentences (ex-
pressions (h) and (i)) can all be manifestations of the
same n-gram. As for semantic variations, note that
noun phrases with different meanings, as is the case

for (a) and (e), can also give rise to the same n-gram.
Defining n-grams this way is based on the hypothe-
sis that various syntactic expressions may convey the
same concept, and is thus to be seen as a form of con-
flation. As for other types of conflation, the generaliza-
tion we perform by means of n-grams has its problems
too. In particular, n-grams as defined here suffer from

• over-generalization: this may be seen from the
fact that example (i) does not refer to the same
concept as examples (a) to (h);

• under-generalization: this may be seen from the
fact that an expression such as retrieving interest-
ing information arguably refers to the same con-
cept as examples (a) to (h) but is not recognized
as such.

Note also that, quite obviously, the mere contiguous
occurrence of two words in a text does not guarantee
that they refer to a complex concept. For instance,
the text

What is recursion? It is what was illustrated in
the dialogue Little Harmonic Labyrinth: nest-
ing, and variations on nesting.

contains the bigrams illustrat recur, dialog illustrat, di-
alog harmon, harmon labyrinth, labyrinth nest, and nest
var. Arguably, none of these conveys an articulated
concept, as in each case the consecutive occurrence of
the two words is not indicative of a strong semantic
relationship between them. It is then clear that the
use of n-grams for indexing purposes is possible only
in the presence of a method for filtering interesting
n-grams from non-interesting ones.
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Filtering is also necessary because the number of dif-
ferent n-grams that occur at least once in a collection
is too high. In fact, while the number of k-gram oc-
currences increases linearly (for any k-gram occurrence
there are 2 (k + 1)-gram occurrences), the number of
different k-grams increases much more, since the aver-
age (k+ 1)-gram occurs much less frequently than the
average k-gram.

There are many possible filters, most of which are
based on frequency of occurrence considerations. This
is not surprising, since we may expect an interesting
bigram such as inform retriev to have different occur-
rence patters from an uninteresting, “occasional” bi-
gram such as illustrat recur.

4 A classifier-independent evaluation
of the usefulness of statistical
phrases in text categorization

Our method of establishing the usefulness of n-grams
for TC purposes consists in generating all k-grams (for
k = 1, . . . , n) that occur in a corpus of documents,
score each of them by means of a FEF of the type
discussed in Section 2.1, and rank them according to
the score received. The usefulness of n-grams for TC
will be determined by how frequently n-grams appear
at the top of this ranked list.

In order to be more precise we introduce the notion of
penetration level of n-grams.

Definition 2 Let Tr be a training set of documents
and r be the number of different unigrams that oc-
cur in it. We define the penetration level πf

ρ (n) of
n-grams for FEF f at reduction factor ρ as the frac-
tion of the r′ = r(1 − ρ) top (according to f) k-grams
(k = 1, . . . , n) of Tr that are actually n-grams.

The purpose of this definition is best described by an
example. Suppose that there are 10,000 different uni-
grams in our training set Tr. If we had to apply a FEF
f to each of these 10,000 unigrams with reduction fac-
tor .90, we would obtain the 1,000 unigrams that f
considers the most valuable. Suppose that there are
120,000 different bigrams in Tr. In order to compute
the penetration level πf

.90(2) we apply f to each of the
130,000 k-grams (k = 1, 2) and check how many of the
top 1,000 k-grams are actually bigrams. The higher
πf

.90(2) is, the more worthwhile bigrams prospectively
look, and the more worthwhile it looks to extract them.
Or, at least, worthwhile according to our chosen FEF
f and for the reduction factor ρ chosen. If we repeat

the same experiment for different FEFs fi and differ-
ent reduction factors ρj ≤ r, averaging the results in
some way, we can get a fairly clear picture of the how
promising bigrams look for for TC purposes, and we do
so without invoking even a single learning algorithm,
which means that our results are arguably going to
be valid regardless of the specific learning algorithm
chosen. This method is, of course, applicable for any
value of n.

4.1 Pros and cons of this approach

Before moving to the discussion of the experimental
results we have obtained, we should remark that this
is not by any means the only possible approach to
the evaluation of n-grams for TC. A possible alter-
native approach consists in generating only a subset
of prospectively good n-grams (i.e. n-grams selected
according to a particular statistical filter [6] or heuris-
tics [8, 25]), using them in document indexing, and
checking the difference in effectiveness that a given
classifier exhibits with respect to the standard “bag
of words” case.

This latter method has no doubt the advantage of a
better computational efficiency; for instance, a heuris-
tics according to which all and only the n-grams that
are composed of “valuable” unigrams and/or have cer-
tain frequency characteristics are generated, allows to
substantially reduce the computation time needed to
generate the n-grams and completely avoids the com-
putation time needed to score them. For some prac-
tical applications, this may even be the only feasible
method.

The drawback of this method, though, is that the ex-
perimental results thus obtained are going to be depen-
dent on the chosen heuristics and on the chosen clas-
sifier learning algorithm. The method we have chosen
abstracts away from both aspects. While the latter
aspect needs no further discussion, concerning the for-
mer we want to emphasize that

1. the method relies not on generic heuristics, but on
FEFs that are both well-studied and well-founded
on statistical and information theory;

2. the method relies on the application of a whole
range of FEFs, so as to obtain results that are
not biased towards one or the other FEF.

In a sense, the real object of this work is thus not us-
ing n-grams in a particular TC application, and hence
devising an efficient algorithm for extracting them.
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This work is more foundational in nature, as we want
instead to assess whether, in principle, n-grams are
prospectively interesting for TC applications so that
it might be worth to devise such an algorithm. For
this purpose, it is clear that we need to analyze all
n-grams, and not just those that are generated by a
selective heuristics. For the same reason, we need to
perform this analysis in the most general possible way,
that is, without reference to specific learning algorithm
and with reference to the widest possible spectrum of
FEFs.

5 “Indirect” experiments

We have performed a number of experiments in or-
der to test the usefulness of n-grams for TC accord-
ing the above-mentioned learner-independent method.
The experiments reported in this paper are limited to
the case of n = 2.

5.1 Experimental setting

For our experiments we have used the “Reuters-
21578, Distribution 1.0” corpus, as it is currently the
most widely used benchmark in text categorization
research3. Reuters-21578 consists of a set of 12,902
news stories, partitioned (according to the “ModApté”
split we have adopted) into a training set of 9,603 doc-
uments and a test set of 3,299 documents. The docu-
ments have an average length of 211 words (that be-
come 117 after stop word removal) and are labelled by
118 categories; the average number of categories per
document is 1.08, ranging from a minimum of 0 to a
maximum of 16. The number of positive examples per
category ranges from a minimum of 1 to a maximum
of 3964. According to Definition 1, Reuters-21578 con-
tains 17,439 unigrams and 250,059 bigrams, for a total
of 267,498 uni+bigrams.

We have run our experiments on the set of 115 cate-
gories with at least 1 training example, rather than on
other more commonly used subsets of it. The full set of
115 categories is “harder”, since it includes categories
with very few positive instances for which inducing re-
liable classifiers is obviously a haphazard task4.

In all the experiments discussed in this section, stop
words have been removed using the stop list provided

3The Reuters-21578 corpus may be freely downloaded
for experimentation purposes from
http://www.research.att.com/~lewis/reuters21578.html

4See [15] for a discussion on why this is the “right”
subset of Reuters-21578 categories to use.

in [21, pages 117–118]. Punctuation has been removed
and all letters have been converted to lowercase; no
number removal has been performed.

5.2 Experimental results

Table 2 and Figure 1 report the results of comput-
ing penetration levels for bigrams by applying the four
FEFs described in Table 1 with varying reduction fac-
tors. We have chosen these FEFs as they have turned
out to be the best performers in the thorough compar-
ative experiments of [24, 33].

From these results it is evident that, for each FEF, the
penetration level is a decreasing function of the reduc-
tion factor. This is not surprising because for a small
reduction factor, as features are selected, less and less
unigrams tend to be available for the next selection,
while the number of bigrams available for the next se-
lection tends to be substantially unaffected (given its
originally huge number). For instance, in the begin-
ning there are a total of 17,439 unigrams and 250,059
bigrams, i.e. there are 14.33 times more bigrams than
unigrams. After selecting, say, the top 9,750 features
by means of DFavg, 3,260 unigrams and 6,490 bigrams
have been chosen, which means that 14,179 unigrams
and 243,569 bigrams are still available for further se-
lection. This means that there are now 17,18 times
more bigrams than unigrams, a higher proportion than
earlier, which means that the chances that the next se-
lected feature will be a bigram are now higher.

Also, from Figure 1 it is evident that the six FEFs
studied may be partitioned in two groups of three
FEFs each ({DFavg, IG, χ2

avg} and {χ2
max, ORavg,

ORmax}), where the FEFs of the same group display
a very similar behaviour. Incidentally, this confirms
one results of Yang and Pedersen [33], who in an ex-
periment involving two different collections had shown
DFavg and IG to be highly correlated, and had conjec-
tured that this pattern was general rather than corpus-
dependent.

The third observation is that penetration levels are in-
deed high! This means that if we define bigrams as in
Definition 2, many of them have statistical character-
istics that, according to the FEFs we have employed,
make them preferable to many of the unigrams rated
high by the same FEFs.

Column 1 of Table 3 lists, for various FEFs and reduc-
tion factors, the average score obtained by a feature
selected by the FEF. Each entry lists the average score
of unigrams, of uni+bigrams, and the increase in aver-
age score obtained in switching from the former to the

6



.000

.100

.200

.300

.400

.500

.600

.700

.800

.900

1.000

.441 .470 .498 .527 .556 .584 .613 .642 .670 .699 .728 .756 .785 .814 .842 .871 .900 .928 .957 .986

 DF(avg)

 IG

ChiSquare(avg)

ChiSquare(max)

OddsRatio(avg)

OddsRatio(max)

# of Reduction
features Factor DFavg IG χ2

avg χ2
max ORavg ORmax

250 .986 .128 .192 .276 .560 .512 .564
500 .971 .176 .276 .338 .736 .686 .766
750 .957 .216 .319 .391 .797 .747 .827
1000 .943 .244 .352 .423 .833 .776 .864
1250 .928 .276 .376 .444 .859 .798 .882
1500 .914 .304 .398 .471 .877 .812 .897
1750 .900 .328 .422 .489 .883 .825 .907
2000 .885 .353 .445 .504 .883 .834 .911
2250 .871 .373 .464 .523 .891 .833 .918
2500 .857 .392 .482 .535 .899 .833 .920
2750 .842 .419 .499 .551 .902 .839 .919
3000 .828 .438 .510 .563 .897 .842 .923
3250 .814 .456 .522 .573 .898 .843 .927
3500 .799 .469 .535 .587 .902 .847 .926
3750 .785 .482 .548 .592 .906 .852 .927
4000 .771 .494 .556 .600 .903 .853 .929
4250 .756 .507 .567 .610 .906 .857 .928
4500 .742 .520 .580 .616 .909 .859 .927
4750 .728 .533 .590 .626 .910 .860 .925
5000 .713 .541 .597 .634 .911 .863 .923
6000 .656 .574 .624 .656 .910 .874 .925
7000 .599 .605 .648 .675 .908 .873 .924
8000 .541 .632 .667 .688 .911 .879 .923
9000 .484 .652 .683 .704 .910 .882 .921
10000 .427 .669 .697 .714 .913 .889 .925

Table 2: Penetration level for 2-grams computed for different FEFs at different reduction factors.

Figure 1: Penetration level for 2-grams computed for different FEFs at different reduction factors.
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latter. In order to correctly interpret the results, note
that every row of Table 3 includes two sub-rows re-
porting results for the unigrams and the uni+bigrams
cases, respectively, using the same number of features.
For instance, to interpret the first row of results one
should note that reducing the set of 17,439 unigrams
by a .70 reduction factor yields 5,232 features, which
is the same number of features obtained by reducing
the set of 267,498 uni+bigrams by a .9805 reduction
factor. The results listed in Column 1 show that the
FEFs that achieve high penetration levels (see Table 2)
also achieve a high increase in the average score of a
feature. This would seem to confirm that penetration
levels are indeed a reasonable way to compute the con-
tribution of n-grams to the quality of a feature set.

The combined results of Tables 2 and 3 seem thus to
indicate that DFavg, IG and χ2

avg are the most “conser-
vative” FEFs, in that they do not allow many bigrams
to enter the top scoring feature set; conversely, χ2

max,
ORavg and ORmax are the most “liberal”.

6 “Direct” experiments

6.1 Evaluation methodology

In the experiments that follow, classification effective-
ness has been measured in terms of the classic IR
notions of precision (Pr) and recall (Re) adapted to
the case of document categorization. Precision wrt ci

(Pri) is defined as the probability that if a random
document dx is categorized under ci (i.e. it is deemed
a positive example of ci), this decision is correct (i.e.
it is a true positive for ci). In what follows, TP , TN ,
FP and FN will denote the numbers of true positives,
true negatives, false positives, and false negatives, re-
spectively. Recall wrt ci (Rei) is instead defined as the
probability that, if a random document dx ought to be
categorized under ci, this decision is taken. Estimates
of Pri and Rei (indicated by P̂ ri and R̂ei) may be
obtained in the obvious way by counting occurrences
on the test set. These category-relative values may
in turn be averaged to obtain P̂ r and R̂e, i.e. values
global to the whole category set C, according to two
alternative methods:

• microaveraging (indicated by the “µ” super-
script): P̂ r and R̂e are obtained by globally sum-
ming over all individual decisions, i.e.:

P̂ r
µ

=
TP

TP + FP
=

∑m
i=1 TPi∑m

i=1(TPi + FPi)

R̂e
µ

=
TP

TP + FN
=

∑m
i=1 TPi∑m

i=1(TPi + FNi)

• macroaveraging (indicated by the “M” super-
script): precision and recall are first evaluated
“locally” for each category, and then “globally”
by averaging over the results of the different cat-
egories, i.e.:

P̂ r
M

=

m∑
i=1

Pri

m
=

m∑
i=1

TPi

TPi + FPi

m

R̂e
M

=

m∑
i=1

Rei

m
=

m∑
i=1

TPi

TPi + FNi

m

In our experiments we have evaluated both microav-
eraged and macroaveraged precision and recall.

As a measure of effectiveness that combines the con-
tributions of both P̂ r and R̂e, we have used the well-
known Fβ function, defined as

Fβ =
(β2 + 1) · P̂ r · R̂e
β2 · P̂ r + R̂e

with 0 ≤ β ≤ +∞. Similarly to most other researchers
we have used the parameter value β = 1, which places
equal emphasis on P̂ r and R̂e.

6.2 Experimental results

Table 4 compares the effectiveness of unigrams and
uni+bigrams on a linear classifier induced according to
the Rocchio method, for the four FEFs of Table 1 and
for different reduction factors. The Rocchio parame-
ters have been set to β = 16 and γ = 4 (see [30, Section
6.6] for a full discussion of the Rocchio method). Term
weighting has been obtained by means of the standard
“ltc” variant of the tfidf function, i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)

where #Tr(tk) denotes the number of documents in
Tr in which tk occurs at least once and

tf(tk, dj) =
{

1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise.

where #(tk, dj) denotes the number of times tk occurs
in dj . Weights have been further normalized by cosine
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Reduction Average Average Average
Factor Score Document # Category #

DFavg .70 80.393 80.393 14.751
DFavg 9805 118.498 (+47.4%) 118.498 (+47.4%) 19.937 (+35.2%)
DFavg .80 116.861 116.861 19.783
DFavg .9870 164.113 (+40.4%) 164.113 (+40.4%) 24.247 (+22.6%)
DFavg .90 214.195 214.195 30.096
DFavg .9935 281.220 (+31.3%) 281.220 (+31.3%) 32.795 (+9.0%)

IG .70 -2.907 80.037 14.653
IG 9805 -2.903 (-0.1%) 114.478 (+43.0%) 18.873 (+28.8%)
IG .80 -2.904 115.996 19.506
IG .9870 -2.900 (-0.2%) 157.681 (+35.9%) 22.345 (+14.6%)
IG .90 -2.898 210.065 28.886
IG .9935 -2.893 (-0.2%) 264.287 (+25.8%) 29.073 (+0.6%)

χ2
avg .70 12.516 78.922 13.759

χ2
avg 9805 23.373 (+86.7%) 109.367 (+38.6%) 15.476 (+12.5%)

χ2
avg .80 17.521 113.975 18.161

χ2
avg .9870 31.339 (+78.9%) 150.118 (+31.7%) 18.646 (+2.7%)

χ2
avg .90 30.559 204.378 26.747

χ2
avg .9935 51.497 (+68.5%) 251.638 (+23.1%) 24.763 (-7.4%)

χ2
max .70 323.592 63.427 10.028

χ2
max 9805 1805.572 (+458.0%) 14.025 (-77.9%) 3.062 (-69.5%)

χ2
max .80 441.239 73.628 10.141

χ2
max .9870 2183.591 (+394.9%) 14.884 (-79.8%) 2.999 (-70.4%)

χ2
max .90 713.364 73.645 9.212

χ2
max .9935 2936.242 (+311.6%) 16.622 (-77.4%) 2.631 (-71.4%)

ORavg .70 2.980 22.825 3.321
ORavg 9805 8.257 (+177.0%) 16.919 (-25.9%) 1.961 (-40.9%)
ORavg .80 3.695 17.923 2.915
ORavg .9870 10.801 (+192.3%) 22.373 (+24.8%) 2.056 (-29.5%)
ORavg .90 5.506 24.107 2.990
ORavg .9935 17.721 (+221.9%) 34.618 (+43.6%) 2.052 (-31.4%)

ORmax .70 411.681 18.826 6.498
ORmax .9805 4003.307 (+872.4%) 5.339 (-71.6%) 2.799 (-56.9%)
ORmax .80 575.073 15.278 5.823
ORmax .9870 5217.889 (+907.3%) 5.113 (-66.5%) 2.464 (-57.7%)
ORmax .90 982.787 12.660 5.062
ORmax .9935 7583.538 (+671.6%) 3.812 (-69.9%) 1.963 (-61.2%)

Table 3: Average score of a feature (Column 1), average number of documents in which a feature occurs (Column
2), and average number of categories in which a feature occurs (Column 3), computed for various FEFs at different
reduction factors. Every entry lists the score for the unigrams case (upper sub-row), for the uni+bigrams case
(lower sub-row), and the percentage increase between the former and the latter.
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Reduction Micro Micro Micro Macro Macro Macro
FEF Factor Recall Precision F1 Recall Precision F1

DFavg .60 .674 .778 .723 .521 .678 .589
DFavg .9740 .683 .788 .732 .530 .688 .599
DFavg .70 .674 .778 .723 .522 .679 .590
DFavg .9805 .683 .788 .732 .525 .679 .592
DFavg .80 .680 .785 .728 .528 .683 .595
DFavg .9870 .681 .785 .729 .512 .651 .573
DFavg .90 .686 .791 .734 .524 .670 .588
DFavg .9935 .669 .772 .717 .493 .616 .548

IG .60 .674 .777 .722 .520 .679 .589
IG .9740 .684 .789 .732 .532 .680 .597
IG .70 .676 .780 .724 .526 .683 .594
IG .9805 .684 .789 .733 .532 .682 .598
IG .80 .680 .785 .728 .527 .684 .595
IG .9870 .685 .790 .733 .536 .685 .601
IG .90 .688 .793 .737 .531 .680 .597
IG .9935 .682 .788 .731 .534 .697 .604

χ2
avg .60 .674 .778 .722 .520 .680 .590

χ2
avg .9740 .686 .791 .734 .538 .693 .606

χ2
avg .70 .676 .780 .724 .522 .680 .591

χ2
avg .9805 .686 .792 .735 .538 .695 .606

χ2
avg .80 .681 .786 .730 .534 .690 .602

χ2
avg .9870 .685 .790 .734 .520 .679 .589

χ2
avg .90 .688 .794 .737 .537 .700 .608

χ2
avg .9935 .674 .778 .722 .495 .622 .551

χ2
max .60 .676 .780 .725 .518 .676 .587

χ2
max .9740 .679 .788 .729 .537 .691 .604

χ2
max .70 .678 .783 .727 .520 .679 .589

χ2
max .9805 .658 .768 .708 .528 .688 .598

χ2
max .80 .683 .788 .732 .525 .686 .595

χ2
max .9870 .619 .748 .677 .513 .675 .583

χ2
max .90 .682 .787 .731 .530 .692 .600

χ2
max .9935 .507 .621 .558 .445 .653 .529

ORavg .60 .667 .770 .715 .518 .673 .585
ORavg .9740 .608 .711 .655 .486 .697 .573
ORavg .70 .652 .753 .699 .512 .675 .582
ORavg .9805 .583 .693 .633 .449 .661 .535
ORavg .80 .631 .731 .677 .483 .661 .558
ORavg .9870 .566 .692 .623 .437 .641 .520
ORavg .90 .607 .725 .661 .470 .650 .546
ORavg .9935 .549 .671 .604 .401 .654 .497

ORmax .60 .627 .723 .671 .514 .663 .579
ORmax .9740 .414 .483 .446 .422 .593 .493
ORmax .70 .618 .713 .662 .524 .684 .594
ORmax .9805 .387 .484 .430 .410 .597 .486
ORmax .80 .565 .655 .607 .490 .665 .564
ORmax .9870 .337 .470 .392 .365 .621 .460
ORmax .90 .460 .538 .496 .449 .644 .529
ORmax .9935 .261 .666 .375 .264 .733 .388

Table 4: Comparison between the unigram and the uni+bigram effectiveness of a Rocchio classifier for different
FEFs and different reduction factors.
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normalization, i.e.

wkj =
tfidf(tk, dj)√∑r′

s=1 tfidf(ts, dj)2

where r′ is the set of features resulting from feature
selection.

The conventions used in the formatting of Table 4
are similar to those discussed for Table 3. In par-
ticular, we recall that every entry consists of two sub-
rows listing the performance of the Rocchio classifier
on a unigram representation (upper sub-row) and on
a uni+bigram representation (lower sub-row), where
these representations use the same number of features;
this ultimately means that the value of bigrams for TC
purposes can be measured by how often the second
sub-row reports a better result than the first, and by
the magnitude of these improvements.

The results of Table 4 show that bigrams not always
contribute to the categorization effectiveness of the
Rocchio classifier; 20 out of 48 cases witness an im-
provement in effectiveness, while in the other 28 cases
we actually have a loss in performance. Moreover,
when bigrams bring about a performance improve-
ment, this is seldom significant (the best improvement
is 2.8%, obtained for macroaveraged F1 with χ2

max and
ρ = .60). Conversely, when bigrams cause a deteriora-
tion in performance, this is often very significant (the
worst deterioration is 35.1%, obtained for microaver-
aged F1 with ORmax and ρ = .70). All this is in
some sense unexpected, as the results of Tables 2 and 3
would seem to indicate that, particularly when pene-
tration levels and increases in average scores are high,
the overall “quality” of the feature set increases.

Improvements are evenly distributed in the microav-
eraged and macroaveraged cases. Rather, we may ob-
serve that:

1. improvements are more often achieved for low
than for high reduction factors. For instance, a
reduction factor of .60/.9740 often tends to be as-
sociated to performance gains, while a reduction
factor of .90/.9870 almost invariably brings about
effectiveness losses.

2. the loss in effectiveness introduced by bigrams is
higher for those FEFs that have achieved high
penetration levels. For instance, the cases in
which bigrams improve performance are obtained
for IG (7 out of 8 cases), DFavg (5 out of 8), and
χ2

avg (5 out of 8); these were the three FEFs that

had yielded the smallest penetration levels (Ta-
ble 2) and the smallest increases in average score
(Table 3). Conversely, the FEFs that had pro-
duced high penetration levels and increases in av-
erage score perform badly (3 out of 8) or even
disastrously, as is the case for ORavg and ORmax

(both achieve 0 out of 8).

3. increases in the number of documents in which
a feature occurs and in the average number of
categories in which a feature occurs (Columns 2
and 3 of Table 3) seem to be associated with an
increase in performance, although this is not a
definitely clear pattern.

These observations (especially 1 and 2) seem to indi-
cate that an excessive use of bigrams at the expense
of unigrams may be detrimental to effectiveness, even
if the total score of the top feature set is increased by
letting bigrams in. This may indicate that important
unigrams are pushed out of the top set by bigrams
that somehow “duplicate” the information carried by
existing unigrams. For instance, inform retriev, inform
and retriev may all be selected for the top set, with
inform retriev pushing out a unigram that is quite un-
related to all other remaining features. This is an in-
herent weakness of the “filtering” approach to feature
selection, i.e. the fact that a feature is evaluated inde-
pendently of all other features. In principle, a better
approach would be the “wrapper” approach to feature
selection [16], whereby feature sets are evaluated as
a whole however, this approach is impractical in TC,
since in the presence of large sets of feature to choose
from it is computationally infeasible.

Besides eliminating potentially informative unigrams,
the selecting of too many bigrams has the further
drawback that it increases the pairwise stochastic de-
pendence between terms, a situation which is at odds
with the principles underlying most text classifiers cur-
rently used (including Rocchio). There are methods
designed to handle such situations, e.g. maximum en-
tropy [18]. Maximum entropy combines feature selec-
tion with a classifier, somewhat similarly to Bayesian
methods. When confronted with words that co-occur
frequently (a situation that can be the effect of the
above-mentioned “duplication”), maximum entropy
avoids the conclusion that this co-occurrence of is a sig-
nificant predictor of class memebership. In empirical
applications, however, both [26] and [18] have reported
mixed performance of maximum entropy. While in
some domains an improvement has been reported with
respect to Bayesian classifiers, in some others a deteri-
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oration in classification accuracy has been noted [26].
Kantor and Lee [18] report similarly mixed results on
an information retrieval task.

7 Related work

Phrase indexing is closely related to the problem of
automatic term recognition (ATR) in terminology, a
subfield of computational linguistics that investigates
the identification and extraction from texts of linguis-
tic units which characterise specialised domains. In
their excellent review of ATR research, Kageura and
Umino [17] draw a distinction between research that
emphasizes “unithood” (i.e. the fact that a given lin-
guistic expression qualifies as a “term” from a syntac-
tic point of view) and research that instead empha-
sizes “termhood” (i.e. the fact that a given linguistic
expression qualifies as a “term” from a semantic point
of view). The distinction we have drawn between syn-
tactic and statistical phrases for use in IR and TC is
very similar.

7.1 Related work in information retrieval

Work on the use of either syntactic or statistical
phrases in IR dates back to the early ’70s (see [9]
for a review of this early work). However, it was not
until Fagan’s work [9, 10] that thorough experimen-
tal comparison between standard indexing, syntactic
phrase indexing and statistical phrase indexing was
performed. In his experiments Fagan found syntactic
phrases to yield very small effectiveness improvements,
notwithstanding the fact that a sophisticated linguis-
tic technique had been employed for phrase extraction.
More importantly, he also fould that statistical phrases
obtained by a simple method improved performance a
lot more than the syntactic phrases.

Lewis and Croft [22] have investigated the idea of ex-
tracting syntactic phrases and then clustering them in
order to endow the resulting indexing language with
better statistical properties, but this has not resulted
in significant effectiveness improvements.

Mitra et al. [23] have investigated the impact of both
syntactic and statistical phrases in IR. Their research
shows that the difference in effectiveness between the
two is almost negligible, and that there is a significant
overlap between the sets of phrases identified by the
two methods (41% of the union of the two sets is in
their intersection). They have also shown that phrase
indexing gives little benefits at low recall levels, but
the benefits tend to increase at high recall levels. This

is an important observation for TC applications, since
in TC the recall level is usually a parameter learnt on
a validation set; this means that if phrases are used, in
TC the recall level that maximizes overall performance
is automatically chosen by the system. The statistical
phrases of [23] are exactly equivalent to our bigrams
(they do not consider n-grams for n ≥ 3), with the only
difference that an empirical statistical filter is used
in place of our FEFs (i.e. only bigrams occurring in
more that 25 documents are considered). The results
of [23] concerning statistical phrases have essentially
been confirmed by a later study by Turpin and Mof-
fat [31], who have also tried to use non-alphabetically-
ordered phrases without obtaining substantially differ-
ent results.

7.2 Related work in text categorization

While quite a few researchers have investigated the
usefulness of phrase indexing for IR purposes, rela-
tively few have done the same in a TC context. A num-
ber of researchers, although using syntactic [12, 32] or
statistical [1, 27, 28, 29] phrases for TC purposes, do
not provide explicit comparisons between performance
with and without phrases.

7.2.1 Syntactic phrases

Lewis [20, 21] has been the first to study the ef-
fects of syntactic phrase indexing in a TC context.
He reported that, in the context of a Näıve Bayes
classifier, this yields significantly lower effectiveness
than standard “set-of-words” indexing, regardless of
whether the syntactic phrases and successively clus-
tered (similarly to [22]) or not. It has to be remarked,
though, that Lewis’ phrase indexing language con-
sisted of phrases only; this is different from most other
works (including the present one), in which phrases
are added to a unigram-based indexing language.

Dumais et al. [7] report having noted no benefit at
all from the use of syntactic phrases with a variety
of text classifiers in the context of Reuters-21578
experimentation.

Fürnkranz et al. [14] showed that syntactic phrases
yield precision improvements at low recall levels, some-
how confirming the results obtained by Mitra et al. [23]
in an IR context.

7.2.2 Statistical phrases

Mladenić and Grobelnik [25] have extracted n-grams
of length up to 5 by means of a fast (although incom-
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plete) algorithm that relies on document frequency as
a statistical filter. On a Näıve Bayes classifier applied
to a corpus of Web pages they have found that n-grams
of length up to 4 give significant benefits with respect
to the single words case, while 5-grams do not provide
additional benefit.

Fürnkranz [13] uses an algorithm similar to that of [25]
to extract n-grams of length up to 5. On Reuters-
21578 he has found that Ripper [5] has a significant
improvement in performance when n-grams of length
up to 2 are used, but that longer n-grams reduce clas-
sification performance; on another dataset of Usenet
newsgroup articles he instead found also 3-grams to
have some utility, whereas the negative contribution
of n-grams was confirmed.

The difference between the experiments in [13, 25]
and our experiment, apart from the obvious issue of
learner-independence, is that [13, 25] used no stem-
ming and no alphabetical ordering. This is an impor-
tant difference since, as discussed in Section 3, stem-
ming and alphabetical ordering allow to factor out a
significant number of morphological, syntactic and se-
mantic differences between linguistic expressions.

Another difference between our research and all other
works discussed in this section is that, in comparing
the effectiveness deriving from standard indexing with
that deriving from phrase indexing, we keep the num-
ber of features fixed (i.e. bigrams substitute some uni-
grams in the vector representations) while in all other
works this is not (i.e. bigrams are added to the uni-
grams in the representation). We have chosen to do
this because, unlike in IR, in TC the dimensionality of
the feature space is an important parameter (see Sec-
tion 2.1), and because of this any comparison between
different representation schemes is significant only if
the numbers of features used are the same.

8 Conclusion

We have investigated the usefulness of bigrams in
text categorization by first performing a learner-
independent study and then assessing whether the in-
dications of this study were confirmed by real text cat-
egorization experiments. We think this approach sheds
some light on the role of bigrams in TC, a role that
in previously published experiments had been clouded
by learner-dependent issues. Further, we remark that
this study uses a definition of n-grams that, although
standard in IR contexts, has never been evaluated in
TC experiments.

The learner-independent study showed that feature
evaluation functions that are routinely used in text
categorization experiments tend to score many bi-
grams higher than unigrams that they would them-
selves select in unigram-only feature selection tasks,
sometimes giving rise to high bigram “penetration lev-
els”. This would seem to indicate that there is value
added in selecting a fixed number of features from a
pool that contains not only all unigrams but also all
bigrams.

Our hypothesis that a high penetration level were con-
ducive to improving effectiveness was not completely
confirmed. In particular, our experiments showed that
when the bigram penetration level is too high, effec-
tiveness may decrease, and it is easy to conjecture that
this is due to the elimination of informative unigrams
on the part of bigrams that partly duplicate the infor-
mation carried by existing unigrams.

All in all, we think that the issue of information dupli-
cation as a result of bigram insertion is central to un-
derstanding why significant penetration levels on the
part of bigrams do not go on a par with classifier effec-
tiveness improvements. This will be the main direction
along which we plan to carry out further work.
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