
1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 1

Learning to Weight for Text Classification
Alejandro Moreo Fernández, Andrea Esuli, and Fabrizio Sebastiani

Abstract—In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the
document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks
characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take
into account the distribution (as estimated from training data) of the term across the classes of interest. Although “supervised term
weighting” approaches that use this intuition have been described before, they have failed to show consistent improvements. In this
article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we
propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting
function optimised on the training set of interest; we dub this approach Learning to Weight (LTW). The experiments that we run on
several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting
approaches in text classification.

Index Terms—Term weighting, Supervised term weighting, Text classification, Neural networks, Deep learning.

F

1 INTRODUCTION

IN information retrieval (IR) and related disciplines, where
each textual document is represented as a vector of terms

(a.k.a. “features”), term weighting consists of computing
a numerical score that reflects the importance of a given
term t for a given document d [1]. Once the designer has
decided what should constitute a “term” (e.g., a word, or
the morphological root of a word, or a character n-gram,
etc.), and has thus decided what a vector consists of in
the system, the term weighting method is responsible for
filling out the vector that will represent a specific document.
Once filled, this vector is fed to the module responsible
for computing document-document similarity (when ad hoc
search, or text clustering, are the tasks of interest), or to
the module responsible for training a classifier, or to the
classifier itself (in the case of text classification). Different
term weighting methods generate different vectors for the
same document, thus attributing to the document different
semantic interpretations. “Good” term weighting methods
are thus of fundamental importance for delivering good
search/clustering/classification accuracy.

Term weighting approaches widely used in IR include
TFIDF and BM25; loosely speaking, both methods (as long
as practically all other term weighting methods in the lit-
erature) rely on the same principles, i.e., (a) that terms that
occur more frequently in the document (i.e., terms with high
“term frequency”) are more relevant to the document, and
(b) that terms that occur in fewer documents (i.e., terms with
high “inverse document frequency”) are more relevant tout
court. Different interpretations of these principles lead to the
many term weighting formulae proposed in the literature
[1], [2], [3]. However, practically all such formulae share a
common structure. To see this, let us take one of the many

• All authors are with Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy.
E-mail: {firstname,lastname}@isti.cnr.it

Manuscript received August 16, 2018.

variants of TFIDF, i.e.,

TFIDF(t, d,D) = log(1 + ftd) · log
|D|
n

(1)

and let us take BM25, i.e.,

BM25(t, d,D) =
(k1 + 1) · ftd

k1
(
(1− b) + b · dl

avdl

)
+ ftd

· log
(
|D| − n+ 0.5

n+ 0.5

) (2)

as examples. Here, t is the term and d is the document for
which the score is being computed, D is the collection of
documents (or: the set of training documents, in a text clas-
sification context), ftd is the raw frequency (i.e., the number
of occurrences) of term t in document d, n ≡ |{d′ ∈ D : t ∈
d′}| is the number of documents containing the term, dl and
avdl are the length of d (i.e., the number of term occurrences
that d contains) and the average length of the documents in
D, and k1 and b are two parameters (typically set to 1.2
and 0.75, respectively [4]). Leaving aside the mathematical
details for the moment being, the important thing to note
is that the right-hand side of both equations consists of
the product of two factors, i.e., a document-dependent factor
(the leftmost one), which depends on the term’s frequency
in the document [5], and a collection-dependent factor (the
rightmost one), which depends on the rarity / specificity
of the term in the collection [6]. Accordingly, many term
weighting functions TW share the common structure

TW(t, d,D,C) = DD(t, d) · CD(t,D,C) (3)

where DD(t, d) and CD(t,D,C) are two “abstract”, generic
functions representing the document-dependent and the
collection-dependent factors, respectively1. Aside from

1. The C parameter in TW(t, d,D,C) and CD(t,D,C) represents
the set of classes, and is thus relevant only in text classification (or
related) contexts. While functions used in ad hoc retrieval, such as those
of Equations 1 and 2, do not depend on it, we include this parameter
because it will prove useful when discussing instantiations of Equation
3 in text classification contexts.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 2

these two factors, in many term weighting functions there
is a third component in the weighting process, i.e., the
normalisation component [3], [7], [8], whose aim is to factor
out document length. In variants of Equation 1 it often takes
the form of a denominator that normalises the entire func-
tion, e.g., implementing cosine normalisation; in Equation
2, instead, a normalisation component is already present in
the denominator of the first factor.

The weighting functions of Equations 1 and 2 are un-
supervised, i.e., they do not leverage the class labels of the
training data when these latter are available. However, in
tasks (such as text classification) characterised by the pres-
ence of training data it seems logical to think that one could
take advantage of the information contained in these labels;
this is the principle at the basis of Supervised Term Weighting
(STW) [9]. The main intuition that underlies STW is that,
in the presence of training data, the CD(t,D,C) factor in
Equation 3, which measures the discrimination power of
term t independently of any particular document d, can be
instantiated by means of a function that measures such dis-
crimination power in a manner more specific to the task at
hand (e.g., classification). In other words, while a traditional
unsupervised CD(t,D,C) function reflects the distribution
of t in the collection (and does not depend on the class
labels C), STW replaces it with a function that reflects this
distribution conditioned on C; in this way, a higher weight is
thus given to those terms whose distribution in the training
data is better correlated with the distribution of the labels.

Several metrics could be directly borrowed from the
literature as candidates for this supervised CD(t,D,C)
factor. Of particular interest are the feature-scoring func-
tions (hereafter: “FS functions”) used in “filter-style” feature
selection [10], [11]. Previous work in STW [9], [12], [13], [14],
[15] has focused on identifying a FS function that performs
well when used to instantiate the CD(t,D,C) factor in
Equation 3; the most widely used such functions include chi-
square (denoted χ2), which evaluates the mutual statistical
dependence of two random variables, and information gain
(a.k.a. mutual information, see Equation 4), which measures
the reduction in the entropy of one random variable (here:
the class label) caused by the observation of another variable
(here: the presence/absence of the term).

In STW, the CD(t,D,C) component of Equation 3 is
instantiated by one of these FS functions (e.g., information
gain); unlike the second factors of Equations 1 and 2, these
feature-scoring functions do depend on C, i.e., on the set of
classes of interest. In this article we will restrict our attention
to the binary classification case, where C = {c, c} (with c
indicating the complement of class c); we leave the extension
to the multiclass case (i.e., |C| > 2) to future work.

Despite the fact that all STW methods (a) do have an
intuitive basis, and (b) have shown some success in empir-
ical evaluations, there are no clear indications that one of
them is consistently superior to the others. This means that
a system designer has to resort to a trial-and-error method
on a validation set in order to select the best-performing
weighting criterion for the application of interest. This ab-
sence of a clear winner in the supervised term weighting
camp may indicate that STW is yet to be fully understood;
we attempt to provide some deeper insight on the nature of
STW in Section 3.

In this article we propose a STW framework for text
classification that learns the CD(t,D,C) function from the
training data; we call this framework Learning to Weight
(LTW). The rationale behind LTW is that past work on term
weighting (either unsupervised or supervised) suggests that
whether a specific CD(t,D,C) function is optimal or not
is data-dependent, which means that it may be better to
directly learn the optimal function from the data.

We propose various instantiations of this framework,
each of them relying on neural network models that learn
this function via optimization. It is important to remark
that our goal here is not producing word embeddings or
dense representations of documents. Instead, we resort to
neural networks as a means of learning the optimal STW
function that is to be applied to each (nonzero) element of a
sparse vector of term frequencies. In order to gain generality,
the optimization process we propose is independent of the
learning algorithm used for training the classifier (and of
the loss minimized by this algorithm), and is instead based
on solving the simpler auxiliary problem of improving the
linear separation between the positive and negative exam-
ples. The experiments we have conducted show that our
method outperforms previous term weighting approaches
for text classification. Furthermore, our exploration of the
learned function brings about some interesting insights on
the geometrical shape of the “ideal” CD(t,D,C) function.

The remainder of the article is structured as follows.
Section 2 reviews previous work on supervised term weight-
ing, while Section 3 analyses the problems inherent in term
weighting for text classification. Section 4 presents our LTW
approach, followed by Section 5 in which we discuss the
experimental evaluation we have carried out. In Section
6 we discuss whether it might make sense to also learn,
aside from the CD(t,D,C) factor, also the DD(t, d) factor.
Section 7 concludes and outlines possible avenues for future
research.

2 RELATED WORK

The history of term weighting goes back to the earliest
vector-based models and probabilistic models of IR, which
were developed in the ’60s (see e.g., [16, §3]). Two contri-
butions that have withstood the test of time, and that form
the basis of nowadays’ term weighting functions, are the
two notions that we have already discussed in Section 1,
i.e., term frequency (whose origins can be traced back to
the development of the SMART system [17]) and inverse
document frequency (which was first formalized in [6]). Many
variants of Equations 1 and 2, which both combine the two
notions in one single formula, have been developed over
the years and tested against each other (for two large-scale
comparisons see [1], [3]). While these two notions were
originally devised for text search, over the years they have
been adopted in an essentially unchanged form for other
text mining tasks, such as text clustering (see e.g., [18]) and
text classification (see e.g., [19, §5.1]).

Supervised term weighting. While this “acritical” adop-
tion seems justified for clustering, which is unsupervised
in nature, it seems not for classification, where additional
information useful for weighting purposes can be extracted

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 3

from training examples. This idea is at the heart of super-
vised term weighting. STW goes back to 2003, when Debole
and Sebastiani [9] proposed to reuse the scores obtained
from FS functions during (supervised) feature selection, in
order to instantiate the CD(t,D,C) factor of Equation 3,
i.e., as a substitute of the more conventional log |D|n and

log
(
|D|−n+0.5
n+0.5

)
factors of Equations 1 and 2. The three

variants investigated in that work used chi-square (Equation
4), information gain (Equation 5), and gain ratio (Equation
6) as instances of CD(t,D,C), i.e.,

χ2(t,D,C) =
|D|(Pr(t, c) · Pr(t, c)− Pr(t, c) · Pr(t, c))2

Pr(t) · Pr(t) · Pr(c) · Pr(c)
(4)

IG(t,D,C) =
∑

t′∈{t,t}

∑
c′∈{c,c}

Pr(t′, c′) log
Pr(t′, c′)

Pr(t′) Pr(c′)
(5)

GR(t,D,C) =
IG(t,D,C)

−
∑
c′∈{c,c} Pr(c

′) log2 Pr(c
′)

(6)

where C = {c, c} and Pr denotes a probability on the event
space of documents (e.g., Pr(t, c) is the probability that a
random training document does not contain t and belongs
to class c). However, their results (using Support Vector
Machines as the learning algorithm) did not show STW to
bring about consistent improvements over TFIDF.

A subsequently proposed STW approach is ConfWeight
[13], which adopts a relevance criterion based on statistical
confidence intervals; the criterion can simultaneously be
used for performing feature selection and term weighting.
At the same time, [20] proposed relevance frequency, refined
in [14] as

RF(t,D,C) = log

(
2 +

Pr(t, c)

max{ 1
|D| ,Pr(t, c)}

)
(7)

as the instance of the CD(t,D,C) factor. STW based on
relevance frequency (which we use as a baseline in the
experiments of Section 5) was found by [20] to be superior
to STW using χ2 or IG, but comparable to standard TFIDF
under certain circumstances.

Experiments similar to the ones of Debole and Sebastiani
[9] were carried out in [12], where instead STW proved
useful for improving the classification accuracy of k-Nearest
Neighbours (KNN) classifiers.

Other variations on the same theme are to be found
in [21], [22], [23], [24], [25], while applications of STW to
specific instantiations of text classification, such as question
classification [15] or sentiment classification [26], [27], have
also been reported.

Overall, the results reported in the literature show, as
hinted above, that there is no clear consensus as which
variant of STW is the best, and as to whether STW is indeed
superior or not to standard unsupervised weighting.

Representation learning. Term weighting document
vectors is inherently related to representation learning, an area
of research where neural networks, and in particular deep
learning architectures [28], tend to outperform the competi-
tion. Deep learning allows computational models composed
of non-linear projections to learn effective representations of
the inputs by backpropagating the errors with respect to the
model parameters. In recent work [29] deep learning models

have been used to obtain continuous, dense representa-
tions for words and document vectors. Such methods have
proved effective at modelling word semantics, but require
the processing of very large external text collections in order
to succeed. Bag-of-words approaches to text classification,
which are the context of our LTW work, do not require
any external text collection. In the experiments we include
a comparison with FASTTEXT [30], [31], a top-performing
method based on distributional semantics that uses dense
representations.

In the present work neural networks are not used for
training a text classifier (for this, a neural network or
any other learning algorithm could be used); instead, the
rationale of using neural networks is (a) to exploit their
modelling flexibility in order to improve the weighting
criterion, and (b) to permit the inspection of the learned
weighting function, in order to allow the experimenter to
gain intuitions on how an ideal such function looks like.

Learning term weights.. To the best of our knowledge,
the Combined Component Approach (CCA) is the only previous
approach resembling the idea of learning term weighting
functions. CCA was presented in [32], in the context of learn-
ing to rank. CCA follows a radically different approach,
though, based on composing, via genetic programming
optimization, complex ranking functions from 20 weighting
factors well-known from past literature (e.g., tf and idf
variants, among others) used as the atomic components. Dif-
ferently from [32], instead of exploring the (huge – see [3])
space of combinations of previously proposed weighting
factors, we take the simpler tpr and fpr statistics (see Section
4) as the atomic components, and allow the optimization
procedure full freedom. The main difference between CCA
and our method is thus the fact that we use the supervision
directly as input to the weighting function learning method
(in order to compute the tpr and fpr statistics), while CCA
only uses the supervision in the evaluation phase, i.e.,
their optimization procedure works primarily by composing
unsupervised weighting factors. We include CCA as one of
our baselines in the experiments of Section 5.

3 PITFALLS IN SUPERVISED TERM WEIGHTING
FUNCTIONS

In this section we analyse some of the typical instantiations
of the components of supervised term weighting functions,
trying to shed some light on the possible reasons why there
is no consensus yet on which among the many available
variants is preferable.

3.1 The DD(t, d) Factor

The most frequently used unsupervised variants of the
DD(t, d) factor of Equation 3 include the raw frequency of t
in d (Equation 8) and log-scaled versions of it (Equations 9
and 10):

DD(t, d) = ftd (8)

DD(t, d) =

{
1 + log ftd if ftd > 0
0 otherwise (9)

DD(t, d) = log (1 + ftd) (10)

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 4

In this paper we focus on the CD(t,D,C) function; this
allows us to draw a fair comparison with existing STW
methods, which do not address the DD(t, d) component of
the weighting function. However, in this section we would
like to discuss a few minor issues that affect traditional
implementations of the DD(t, d) function.

The linear version of Equation 8 does not take into
account the fact that a term frequency variation at low
frequency values, e.g., from 1 to 3, should be considered
much more relevant than a term frequency variation at
high frequency values, e.g, from 11 to 13. For this reason
log-scaled versions such as those of Equations 9 and 10
are usually preferred, since they better capture frequency
variations observed at low frequency values.

However, the non-linearity of log-scaled versions causes
issues with document length. To illustrate this, let us con-
sider a document d ∈ D and a document d′ ∈ D which
consists of two juxtaposed copies of d. The value of ftd′
is double the value of ftd; since the log transformation
is non-linear, if we use Equation 9 or Equation 10 the
cosine-normalised vectors of d and d′ will not be the same,
potentially clashing with the so-called “normalisation as-
sumption”, according to which “for the same quantity of
term matching, long documents are no more important than
short documents” [3].

3.2 The CD(t,D,C) Factor

FS functions have proven useful in filter-style approaches to
feature selection [11]. Feature selection and term weighting
are inherently related, as both tasks build upon a model
of feature importance, which is what FS functions aim to
measure. One might thus expect FS functions to fit the
purposes of term weighting (an intuition that has driven
a lot of previous work in STW – see Section 2). However,
there are reasons to believe that a good FS function is
not necessarily a good CD(t,D,C) component of a term
weighting function. The reason is that our notion of the
quality of a FS function is typically based on its performance
as a ranking function, since FS functions are customarily
used in filter-style feature selection in order to rank features.
That is, if fs is a FS function measuring the degree of
importance of a feature (whatever this might mean), filter-
style feature selection consists of taking the top n ranked
features according to their fs score.

Note that the numeric values produced by a FS function
can be substantially modified by applying to them any
monotonic non-decreasing function, without affecting the
resulting rankings. For example, the three variants of the
IG function in Figure 1 produce exactly the same results
when used to rank features, but can result in very different
outcomes when used to instantiate the CD(t,D,C) func-
tion. This indicates that, when used in a supervised term
weighting formula, for any FS function there is an additional
dimension to be explored for optimization, i.e., monotonic
non-decreasing transformations. Instead of systematically
exploring the space of possible such transformations we
propose to learn the weighting function from scratch on the
training set, without relying on predefined term relevance
functions. This proposal will be detailed in the next section.

tpr

0.0
0.2

0.4
0.6

0.8
1.0

fpr

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

IG

tpr

0.0
0.2

0.4
0.6

0.8
1.0

fpr

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

IG3

tpr

0.0
0.2

0.4
0.6

0.8
1.0

fpr

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

3 IG

Fig. 1: Plots, from top to bottom, include information gain
(IG) unaltered, information gain cubed, and the cubed root
of information gain as a function of the true positive ratio
tpr and the false positive ratio fpr (explained in detail be-
low). Despite being very dissimilar when used as weighting
criteria, the three versions of IG produce identical feature
rankings when used as FS functions.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 5

4 LEARNING TO WEIGHT

We propose a novel supervised weighting approach that,
instead of relying on any predefined formula, learns a term
weighting function optimised on the available training set;
we call this approach Learning to Weight (LTW)2. Essentially,
during training, different term weighting functions (leading
to different term weights for the same term-document pair)
are tested, and the function that minimizes the linear sep-
aration between the positive and negative examples of the
training set is chosen. The different term weighting func-
tions that are tested are generated by neural architectures
described in Section 4.1.

In the rest of the paper we will use slightly differ-
ent mathematical conventions from the ones used in Sec-
tion 2. In fact, while the four functions discussed in that
section are all formulated in terms of the four variables
{Pr(t, c),Pr(t, c),Pr(t, c),Pr(t, c)}, in reality they are func-
tions of just two free variables, since the frequency of the
class Pr(c) ≡ Pr(t, c) + Pr(t, c) in the training set is
fixed, and since Pr(t, c) = Pr(c) − Pr(t, c) and Pr(t, c) =
(1 − Pr(c)) − Pr(t, c). In the rest of the paper we will thus
express our functions in terms of just two free variables;
however, consistently with the tradition of ROC analysis
[33], as our two free variables we will equivalently choose
the true positive rate

TPR(t,D,C) =
Pr(t, c)

Pr(c)
(11)

and the false positive rate

FPR(t,D,C) =
Pr(t, c)

Pr(c)
(12)

As a side effect, this change of variables makes it possible
to plot any CD(t,D,C) function in 3D space, which allows
the experimenter to quickly gain an understanding on how
the weights are assigned (something that will prove useful
in our analysis of the results in Section 5). Figure 2 plots
the FS functions discussed in Section 2 as a function of
the two variables TPR and FPR of Equations 11 and 12;
note that we have not plotted IG(t,D,C) since it differs
from GR(t,D,C) by a fixed multiplicative factor only. As
expected, the plots reveal a consensus on the higher impor-
tance of positively correlated terms (those characterized by
high TPR and low FPR). Interestingly enough, there are
instead discrepancies among these functions on (i) how to
assess the importance of negatively correlated terms (those
with low TPR and high FPR), which are considered as
important as the positively correlated ones by functions
χ2 and GR but ignored by RF; or on (ii) how much the
importance of the term changes due to variations in TPR
and FPR.

4.1 Learning the CD(t,D,C) Factor
In this work we will learn a weighting function individu-
ally for each binary classification problem. As discussed in

2. We should remark that we do not optimise the weighting function
for a specific test set. The fact that we do not use the test set in any way
while learning the weighting function sets our approach apart from the
realm of transductive learning, and squarely places it within the domain
of inductive learning.

tpr

0.0
0.2

0.4
0.6

0.8
1.0

fpr

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

χ2

tpr

0.0
0.2

0.4
0.6

0.8
1.0

fpr

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

GR

tpr

0.0
0.2

0.4
0.6

0.8
1.0

fpr

0.0
0.2

0.4
0.6

0.8
1.0

1

2

3

4

5

6

RF

Fig. 2: Plots, from top to bottom, of chi-square (χ2), gain
ratio (GR), and relevance frequency (RF), as a function of
the true positive ratio tpr and the false positive ratio fpr.
All plots were generated assuming Pr(c) = 0.05.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 6

Section 2, in the binary case any function of a contingency
table can be expressed as a function of the two values
TPR(t,D,C) and FPR(t,D,C). Our working hypothesis is
that the optimal such function is data-dependent. We thus
propose to use a neural network to learn this function from
data, since neural networks are universal approximators
[34].

Concretely, we adopt a multi-layer feedforward network
with one hidden layer, since this architecture, despite being
simple3, is known to be able to approximate any continuous
function if enough hidden nodes are considered [34].

The CD(t,D,C) computation we propose4 is described
by the following equations:

ht = ReLU ([tprt, fprt]×W1 + b1)

cdL(t,D,C) = σ (ht ×W2 + b2)
(13)

where ht is the output of the hidden layer, ReLU(x) =
max(x, 0) is the Rectifier Linear Unit activation function,
[tprt, fprt] is a vector of the two precomputed values
TPR(t,D,C) and FPR(t,D,C), respectively,Wi and bi (for
i ∈ {1, 2}) are the transformation matrix and the bias term,
and σ(x) = 1/(1 + e−x) is the logistic function. The model
parameters Wi and bi (for i ∈ {1, 2}) are shared across
the model, i.e., the same set of parameters is used in order
to compute the weight of each term, in a convolution-like
manner (i.e., all cdL(t,D,C) scores are computed in parallel
on each input pair (tprt, fprt) – see the right branch of the
network in Figure 3a). The subscript L stands for feature-
local, since the weight for a feature t is computed from
statistics (tprt and fprt) local to that feature.

Traditional STW approaches have only considered the
local features tprt, fprt as the inputs in order to compute the
CD(t,D,C) score. However, one could think of leveraging
the global information in the collection in an attempt to
model the possible inter-dependencies among features. For
example, one could think of increasing the CD(t,D,C)
score for a feature which, despite not being too strongly
correlated to the class label, has the strongest correlation
among all other features. Note that such kind of considera-
tions remain out of reach for all feature-local methods.

We thus propose an alternative model, dubbed feature-
global, which instead uses the statistics of all features in
order to compute the CD(t,D,C) score of a given term.
This variant is described by the set of equations

h = ReLU([tpr1, fpr1, . . . , tprT , fprT]×W1 + b1)

o = σ(h×W2 + b2)

cdG(t,D,C) = o[t]

(14)

where Wi and bi (for i ∈ {1, 2}) are the CD(t,D,C) model
parameters (with the same meaning as above) and o is
the output vector containing all CD(t,D,C) scores; the

3. As part of this framework, more complex architectures could be
adopted as well; however, this goes beyond the scope of this work (for
which the expressive power of the adopted network is sufficient) and
is something we plan to investigate in the future.

4. Note the difference in notation between the CD(t,D,C) function
of Equation 3 and the cd(t,D,C) functions of Equations 13 and 14;
the former is an “abstract” function that measures the importance of
term t for dataset D and set of classes C, while the latter are concrete
instantiations of it that we use in this paper. Similarly for the DD(t, d)
function of Equation 3 and the dd(t, d) function of Equation 15.

CD(t,D,C) for term t is returned via the [·] operator. In
this setup the hidden state h is not the result of a separate
parallel computation for each feature, but is instead the
output of a single-step computation that takes into account
all the features at the same time (Figure 3b).

Note that, as the input features for the CD(t,D,C)
function, we could opt for the four joint probabilities
Pr(t, c),Pr(t, c),Pr(t, c),Pr(t, c), in place of the TPR,FPR
factors. However, this would unnecessarily complicate the
system, roughly doubling the number of parameters and
additionally constraining it to discover the actual degrees of
freedom in the input data. Conversely, using both TPR and
FPR (and not, say, just one of them) is essential because
TPR and FPR are altogether defined in terms of all four
joint probabilities (TPR = Pr(t,c)

Pr(t,c)+Pr(t,c)
is a function of

Pr(t, c) and Pr(t, c) while FPR = Pr(t,c)

Pr(t,c)+Pr(t,c)
is a function

of Pr(t, c) and Pr(t, c)). If a method used only one of TPR
and FPR, it would work with incomplete information about
how t are c are correlated.

As a final note, all tprt and fprt inputs for the
CD(t,D,C) function (both local and global) are calculated
once, at the beginning, and then fixed during all the opti-
mization process. Note thus that the only part that varies
during the training process concerns the term frequencies of
each used document vector (i.e., the input of the DD(t, d)
function) which is not directly connected to the CD(t,D,C)
part. For more discussion on this see Section 7.

4.2 Composing the TW score
In this study we instantiate the DD(t, d) factor with the
function

dd(t, d) = log

(
1 +

ftd
dl

)
(15)

i.e., a log-scaling of the frequencies of terms normalized
by the document-length (dl). Normalizing by the document
length is a simple way to limit the variation of the input
range to the neural network, at the same time avoiding the
issues related to document length (see Section 3.1).

Once the dd(t, d) and cd(t,D,C) factors are calculated,
they are multiplied in a pointwise manner5 and then nor-
malised via L2 normalisation, i.e.,

lw(t, d,D,C) =
dd(t, d) · cd(t,D,C)√∑
t∈d (dd(t, d) · cd(t,D,C))

2
(16)

where lw stands for learned weights and cd(t,D,C) is either
cdL(t,D,C) or cdG(t,D,C).

The cd(t,D,C) model parameters are optimised to im-
prove the linear separability of the positive and negative ex-
amples. For that purpose we use a simple logistic regression
model

ŷd = σ(lw(t, d,D,C)×W3 + b3) (17)

where ŷd is the model prediction. As the loss function we
use the cross-entropy

L(yd, ŷd) = − yd log(ŷd)− (1− yd) log(1− ŷd) (18)

5. Note that the tensor resulting from the dd(t, d) branch has “shape”
[batchsize, F] while the tensor from cd(t,D,C) has “shape” [1, F]. This
mismatch in the pointwise multiplication is resolved via “broadcast-
ing”, a typical operation in any deep learning framework.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 7

between the true label ld ∈ {c, c} mapped into {0, 1} by
means of

yd =

{
1 if ld = c
0 if ld = c

(19)

and the prediction logits ŷd ∈ (0, 1). We use cross-entropy
since it is known to be a good differentiable model of the
error for logistic regression.

It is important to note that the logistic regression layer
defined by W3 and b3 has the sole purpose of propagat-
ing the constraints on the parameters for the CD(t,D,C)
model. That is, the logistic regressor is merely used here as
an auxiliary classifier, and the real output of the system are
the parameters Wi and bi (for i ∈ {1, 2}) of the CD(t,D,C)
function; the parameters W3 and b3 of the logistic regressor
are set aside once the optimization ends. The choice of
using a simple logistic regression layer is a minimalistic one,
allowing to directly correlate the values of the lw(t, d,D,C)
function to the class labels, with minimal bias towards the
actual classifier being used. Note that resorting to a more
sophisticated classifier (e.g., a deep multi-layer feedforward
network) could cause the contribution of the supervised
factor to be diminished, as the (auxiliary) net could well end
up delegating the modelling of complex aspects of the data
to the inner layers. Stacking the simplest possible auxiliary
classifier on top thus forces the quality of the lw layer (the
actual outcome of the model) to be maximized.

Figures 3a and 3b show the computation graph in the
local and global variants, respectively.

Note that the Learning to Weight framework gives full
control to the optimization process for balancing the dif-
ferent factors involved in the weighting process. For ex-
ample, if a dataset can be easily separated by exclusively
looking at the frequency of its terms, then the learning
process will force the CD(t,D,C) function to mimic the
constant function cd(t,D,C) = 1. Otherwise, if the term
frequency adds little information, the optimization process
will try to compensate it by increasing the importance of the
CD(t,D,C) factor.

5 EXPERIMENTS

In this section we experimentally compare our Learning to
Weight framework to other supervised and unsupervised
term weighting methods proposed in the literature6.

5.1 Datasets

As the datasets for our experiments we use the popular
REUTERS-21578, 20NEWSGROUPS, and OHSUMED corpora:

• REUTERS-21578 is a publicly available7 test collec-
tion which consists of a set of 12,902 news stories,
partitioned (according to the “ModApté” split we
adopt) into a training set of 9,603 documents and
a test set of 3,299 documents. In our experiments
we restrict our attention to the 115 classes with at

6. The code for reproducing all the experiments discussed in this pa-
per is available at https://github.com/AlexMoreo/learning-to-weight

7. http://www.daviddlewis.com/resources/testcollections/
reuters21578/

least one positive training example. After removing
stopwords, the number of distinct terms amounts to
28,828. This dataset presents cases of severe imbal-
ance, with several classes containing fewer than 5
positive examples.

• 20NEWSGROUPS is a publicly available8 test col-
lection of approximately 20,000 posts on Usenet
discussion groups, nearly evenly partitioned across
20 different newsgroups. In this article we use the
“harder” version of the dataset, i.e., the one from
which all metadata (headers, footers, and quotes)
have been removed (on this, see also Footnote 13).
The dataset contains 101,322 distinct terms after re-
moving stopwords.

• The OHSUMED test collection [35] consists of a set of
MEDLINE documents spanning the years from 1987
to 1991. Each entry consists of summary information
relative to a paper published on one of 270 medical
journals. The available fields are title, abstract, MeSH
indexing terms, author, source, and publication type.
Following [36], we restrict our experiments to the
set of 23 cardiovascular disease classes, and we use
(see http://disi.unitn.it/moschitti/corpora.htm) the
34,389 documents of year 1991 that have at least one
of these 23 classes. Since no standard training/test
split has been proposed in the literature we ran-
domly partition the set into a part used for training
(70% of the documents) and a part used for testing
(the other 30%). The total number of distinct terms
after removing stopwords is 54,949.

Since the present work deals with the binary case, each
experiment on each of these test collections here consists
of running as many binary classification tasks as there are
classes in the collection.

5.2 Learning Algorithms

As the representation model, in all our experiments we use a
simple unigram model with no stemming or lemmatization.
All term weighting approaches are tested in exactly equal
conditions, i.e., we run each combination of a term weight-
ing method and a learning algorithm individually for each
binary classification problem derived from each collection.
In all cases, we apply local feature selection using χ2 as the
feature scoring function and at a reduction ratio of 0.1; this
has proven a good setting in text classification [11].

In order to assess the quality of the weighted vectors
we consider the following learning algorithms for training
classifiers:

• Support Vector Machines (SVM) with a linear kernel
[37], an algorithm that finds the hyperplane in high-
dimensional spaces that separates, by the largest
possible margin to the nearest training examples, the
positive and negative examples.

• Logistic Regression (LR), an algorithm that generates
linear models of the probability that a document
belongs to the class, by using the logistic function.
Considering LR in our experiments is interesting

8. http://qwone.com/∼jason/20Newsgroups/

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 8

[f1d f2d f3d f4d … fFd] [[tpr1 fpr1] [tpr2 fpr2] … [tprF fprF]]

...

...

...

...

...

W1,b1

W2,b2

W3,b3

log

x

||·||2

dd(t,d) cdL(t,D,C)

input feature-statistics

convolution

lw(t,d,D,C)

ht (stride=2)
ReLU

identity or σ

σ

(a)

[f1d f2d f3d f4d … fFd] [tpr1 fpr1 tpr2 fpr2 … tprF fprF]

...

...

...

...

...

W1,b1

W2,b2

W3,b3

log

x

||·||2

cdG(t,D,C)dd(t,d)

input

...

lw(t,d,D,C)

h

o

ReLU

Identity or σ

σ

(b)

Fig. 3: Learning to Weight architectures: local variant (a), and global variant (b).

because the LTW framework we define relies on LR
to define the weighting function.

• Multinomial Naive Bayes (MNB), which implements
the naı̈ve Bayes algorithm for multinomially dis-
tributed discrete data (though in text classification it
is known to work well also for real-valued weighted
vectors [38]).

• K-Nearest Neighbours (KNN), an instance-based
learning algorithm that outputs the class label more
frequent across the k examples most similar to the
test example; as the measure of similarity we use the
Euclidean distance.

• Random Forests (RF), a method which builds an
ensemble of decision trees. The implementation we
use9 combines the resulting classifiers by averaging
their probabilistic predictions, instead of returning
the most frequent class output by the individual
trees.

We also include the results of running FASTTEXT (FT – [30],
[31]), a state-of-the-art method for text classification based
on an evolution of the WORD2VEC architecture [29], [39]
for text classification. FASTTEXT is not a term weighting
method and is here included for comparison purposes only,
i.e., in order to verify how the text classification pipelines
that we use in our experiments fare with respect to state-of-
the-art text classification methods. Results for the FASTTEXT
classifier are only reported for the dense representations that
FASTTEXT produces, since in its currently available imple-
mentation it is not possible to use the FASTTEXT classifier
with externally generated vectors.

5.3 Evaluation Measures
As the effectiveness measure we use the well-known F1,
the harmonic mean of precision (π) and recall (ρ) defined as
F1 = (2πρ)/(π+ρ) = (2TP)/(2TP+FP+FN), where TP ,
FP , FN , are the numbers of true positives, false positives,
false negatives, from the binary contingency table. We take

9. http://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

F1 = 1 when TP = FP = FN = 0, since the classifier has
correctly classified all examples as negative.

In order to average across all the classes of a given
dataset we compute both micro-averaged F1 (denoted by
Fµ1) and macro-averaged F1 (denoted by FM1). Fµ1 is ob-
tained by (i) computing the class-specific values TPc, FPc,
and FNc, (ii) obtaining TP as the sum of the TPc’s (same
for FP and FN), and then applying the F1 formula. FM1 is
obtained by first computing the class-specific F1 values and
then averaging them across the classes.

5.4 Baseline Methods

We choose some relevant unsupervised and supervised
weighting methods as the baselines against which to com-
pare the Learning to Weight framework. The methods
considered in this experimental evaluation are grouped as
follows:

• Unsupervised Term Weighting (UTW) methods: Bi-
nary (the simplest weighting function, that returns
1 if the document contains the term and 0 other-
wise), TF (Equation 8), LogTF (Equation 9), TFIDF
(a variant of Equation 1 that uses the raw frequency
of Equation 8 as the DD(t, d) component), LogTFIDF
(Equation 1), and BM25 (Equation 2).

• Supervised Term Weighting (STW) methods: TFCHI
(Equation 4) and TFGR (Equation 6), proposed in [9];
ConfWeight [13], and TFRF (Equation 7), proposed in
[14]. For all STW variants in this evaluation we adopt
the DD(t, d) factor defined in Equation 9. We leave
aside TFIG (Equation 5) since, in binary classification,
it is equivalent to TFGR, because the only difference
between the two is a constant normalisation factor
that is cancelled out by cosine normalisation. We
also include the dense representations (Dense) that
FASTTEXT produces in this group, since they are
conditioned on the class labels [30], [31]. We also con-
sider the CCA method discussed at the end of Section
2, suitably adapted to binary text classification, as a
further STW baseline.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 9

• Learning to Weight (LTW): we consider both local (L
– Equation 13) and global (G – Equation 14) versions
for the CD(t,D,C) factor. We also investigate a
variant whereby the sigmoid activation function (σ)
of the CD(t,D,C) factor is replaced by an identity
function (I – thus allowing the model to output un-
bounded and negative CD(t,D,C) scores). We thus
propose four LTW variants; e.g., LTW-L-σ denotes
LTW using the Local CD(t,D,C) variant with the σ
activation function.

5.5 Implementation Details
We have implemented our method using Tensorflow [40].
In our experiments we apply dropout to the hidden layer
activations (with a drop probability of 0.2) in order to
prevent overfitting. We use stochastic optimization relying
on the Adam optimiser [41] with a learning rate of 0.005
(leaving the rest of the parameters set to their default values,
i.e., β1 = 0.9, β2 = 0.999, and ε = 1e−0.8), with a batch
size of 100 and shuffling whenever an epoch is completed.
We set the maximum number of iterations to 100,000 steps.
However, we use an early stopping criterion, triggered
when 20 consecutive validation steps (each of them run
after every 100 training steps) have shown no improvement.
In our experiments the runs obtain this convergence after
an average of 5,780 steps, ranging from 900 to 18,100. The
result scores that we report for all LTW variants are averages
across 10 runs. For the model architecture we use a size of
the hidden layer equal to 1000 for the local variant (which
actually is the size of the convolutional filter that works
on each feature separately) and a larger size of 1

2F for the
global variant, where F is the number of distinct terms in
the training set. The rationale behind using a larger size for
the global variant is that it is also meant to model inter-
feature relations.

For the learning algorithms other than FASTTEXT and
CCA we use the implementations provided by Scikit-learn
[42]. For FASTTEXT we use its publicly available implemen-
tation10. As with all other learners, also with FASTTEXT we
train independent binary classifiers, one for each class. We
leave the learning rate at 0.1 (its default value). Although
the authors recommend to set the epoch parameter (the
number of times a complete pass over the entire set is to
be performed) in the range [5,50], we have experienced a
consistent improvement in performance across all datasets
when using higher values. We thus vary the number of
epochs in {5, 10, 25, 50, 100, 250, 500}, and the best values
turn out to be 100 for REUTERS-21578 and OHSUMED, and
500 for 20NEWSGROUPS (for which no further improvement
is verified for higher values).

We have reimplemented11 the CCA method according
to the specifications in [32], and adapted it to binary clas-
sification (in place of ranking, as it was originally devised
for). This means replacing the ranking-oriented evaluation
function used as the fitness function (originally, a combi-
nation of PAVG and FFP4) with F1, which is better suited
for classification (and is also our evaluation measure of

10. https://github.com/facebookresearch/fastText
11. Our implementation of CCA is accessible as part of our code

release.

choice). We modify the process for the selection of the best
individual so as to be driven by the classification accuracy of
a logistic regressor12 as measured on a validation set. In our
implementation of CCA we do not consider terminals t19
and t20 since they are inherently defined upon the notion of
“query”, a notion that does not apply to text classification.
All the hyper-parameters are set to the values recommended
in [32].

To guarantee fair comparisons between our weighting
methods and the baseline weighting methods, the parame-
ters of each classifier are optimised individually, i.e., for each
〈weighting method, learning method, binary class〉 combi-
nation. For all such combinations, optimization is performed
on a subset of the training set used as held-out validation
set; once the parameter values have been chosen, the val-
idation set is merged again into the training set and the
classifier is retrained. For SVMs and LR we test values for
the penalty parameter C in the set {10−4, 10−3 . . . 104}, and
alternatively consider the “dual” and “primal” optimization
variants. For SVMs we test values for the loss parameter in
{hinge, hinge2}. Adhering to a practice well documented
in the literature, for SVMs we adopt the RBF kernel in the
experiments in which dense vectors are used (i.e., in the
experiments that use the representations produced by FAST-
TEXT, documented in rows “Dense” of Tables 1 and 2), while
we adopt the linear kernel when documents are represented
by sparse vectors (i.e., all other experiments). For LR we test
both L1 and L2 regularisation. For MNB, for the α parameter
we test all values in {0.0, 0.001, 0.01, 0.05, 0.1, 1.0}. For KNN,
for the k parameter we test all values in {1, 3, 5, 15, 30}
(a) with all features, or (b) with dimensionality reduction
obtained by selecting the top {25, 50, 100, 250, 500} features
using the χ2 feature scoring function, or (c) with dimension-
ality reduction obtained via Principal Component Analysis
(PCA) at {64, 128, 256} dimensions. For RF we vary the
number of trees in n ∈ {10, 25, 50, 100}, we test both the
Gini and Entropy criteria, and we consider a maximum
number of features in {

√
F , logF, 1000}, where F is the

total number of features.

5.6 Results

Tables 1 and 2 report the results we have obtained on
the REUTERS-21578, 20NEWSGROUPS13, and OHSUMED
datasets, for macro- and micro-averaged F1. Values in
boldface indicate the best results obtained with the given
learner on the given dataset, while values in greyed-out cells
indicate the LTW variants that outperform all baselines.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 10

REUTERS-21578 20NEWSGROUPS OHSUMED

FM1 SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT
U

TW
Binary .519 .579 .489 .493 .562 – .581 .593 .615 .429 .579 – .578 .601 .548 .516 .626 –
TF .592 .599 .490 .496 .555 – .583 .579 .601 .418 .578 – .593 .606 .540 .530 .634 –
LogTF .569 .612 .449 .522 .558 – .611 .619 .571 .470 .570 – .620 .632 .453 .550 .638 –
TFIDF .596 .604 .473 .502 .544 – .598 .609 .594 .492 .592 – .605 .612 .506 .558 .639 –
LogTFIDF .576 .609 .462 .496 .530 – .607 .622 .580 .512 .583 – .614 .636 .491 .574 .643 –
BM25 .554 .582 .462 .509 .561 – .602 .621 .572 .536 .588 – .607 .634 .473 .576 .637 –

ST
W

TFGR .598 .623 .539 .561 .572 – .613 .613 .653 .500 .571 – .508 .546 .299 .566 .621 –
TFCHI .591 .608 .514 .538 .579 – .585 .590 .645 .509 .587 – .478 .514 .267 .590 .626 –
ConfWeight .580 .587 .497 .543 .540 – .588 .577 .578 .485 .569 – .649 .647 .617 .599 .646 –
TFRF .584 .602 .461 .508 .539 – .626 .624 .617 .434 .581 – .635 .634 .552 .477 .640 –
Dense .541 .537 .508 .565 .547 .553 .574 .572 .539 .582 .585 .566 .618 .619 .533 .620 .617 .617
CCA .556 .574 .418 .511 .562 – .581 .578 .604 .487 .579 – .616 .612 .572 .561 .635 –

LT
W

LTW-L-σ .614 .610 .517 .542 .547 – .625 .619 .660 .600 .577 – .642 .642 .596 .543 .624 –
LTW-L-I .629 .619 .502 .583 .553 – .630 .626 .668 .582 .573 – .649 .645 .607 .576 .616 –
LTW-G-σ .531 .530 .375 .442 .505 – .541 .534 .537 .278 .514 – .554 .548 .480 .343 .566 –
LTW-G-I .604 .604 .374 .555 .540 – .635 .620 .494 573 .571 – .651 .650 .459 .638 .633 –

TABLE 1: Results on REUTERS-21578, 20NEWSGROUPS and OHSUMED in terms of FM1 .

REUTERS-21578 20NEWSGROUPS OHSUMED

Fµ1 SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT

U
TW

Binary .822 .843 .649 .794 .841 – .595 .609 .623 .449 .595 – .642 .639 .589 .547 .663 –
TF .836 .843 .621 .797 .847 – .596 .592 .598 .436 .593 – .643 .643 .583 .559 .684 –
LogTF .855 .861 .786 .815 .846 – .628 .634 .599 .492 .593 – .663 .668 .550 .580 .684 –
TFIDF .852 .850 .787 .818 .839 – .617 .627 .619 .511 .612 – .659 .612 .574 .581 .681 –
LogTFIDF .849 .861 .781 .816 .841 – .627 .637 .607 .532 .605 – .665 .668 .566 .599 .684 –
BM25 .844 .850 .769 .819 .847 – .622 .638 .599 .552 .610 – .652 .659 .549 .604 .685 –

ST
W

TFGR .846 .854 .821 .815 .849 – .630 .631 .667 .516 .589 – .577 .587 .410 .596 .664 –
TFCHI .836 .839 .798 .805 .846 – .601 .607 .659 .516 .602 – .566 .588 .379 .616 .665 –
ConfWeight .823 .821 .754 .808 .834 – .603 .592 .609 .495 .593 – .668 .677 .657 .635 .682 –
TFRF .862 .864 .790 .804 .840 – .643 .637 .644 .452 .602 – .677 .662 .619 .536 .679 –
Dense .849 .851 .821 .851 .848 .851 .580 .579 .551 .591 .597 .575 .647 .648 .558 .548 .646 .651
CCA .837 .841 .623 .406 .838 – .600 .601 .605 .507 .597 – .672 .673 .615 .595 .685 –

LT
W

LTW-L-σ .867 .865 .825 .819 .848 – .645 .636 .685 .603 .597 – .688 .678 .660 .598 .663 –
LTW-L-I .874 .869 .821 .843 .846 – .649 .643 .690 .586 .593 – .688 .680 .665 .622 .650 –
LTW-G-σ .824 .818 .773 .776 .819 – .555 .546 .563 .292 .536 – .601 .595 .555 .419 .615 –
LTW-G-I .869 .867 .699 830 .844 – .650 .635 .516 .589 .590 – .693 .689 .513 .666 .663 –

TABLE 2: Results on REUTERS-21578, 20NEWSGROUPS and OHSUMED in terms of Fµ1 .

The results indicate that most LTW approaches perform
comparably or better than the baselines in terms of FM1 ,
and outperform the baselines in Fµ1 in most cases (statistical
significance is discussed in Section 5.7). The best absolute
classification result for each dataset is always obtained by
LTW.

The local variants exhibit the most stable improvement
across datasets and classifiers, while the global variants
seem more unstable in this regard. The local variants out-
perform all other baselines on average in REUTERS-21578
and 20NEWSGROUPS (and rank second in OHSUMED); the
LTW-L-I variant is overall the best-performing method. The
LTW-G-I vectors produce competitive results when used
in combination with SVMs, LR, and KNN. Conversely, the
globally computed vectors prove less suitable for the MNB
classifier; this may be explained by the fact that globally

12. The choice of logistic regression as a proxy has to do with
efficiency. In fact, genetic programming is known to be computationally
expensive, and most of its cost is accounted for by the evaluation of
the fitness function. Since the classifier generated by logistic regression
is an efficient one, this has a positive impact on the efficiency of this
evaluation.

13. While some previous papers (e.g., [43]) have reported substan-
tially higher scores for this dataset, it is worth noticing that we use a
harder, more realistic version of the dataset than has been used in those
papers. In our version, headers, footers, and quotes have been removed,
since these fields contain terms that have near-perfect correlation with
the classes of interest, thus making the classification task unrealistically
easy; see http://scikit-learn.org/stable/datasets/twenty newsgroups.
html for further details. Our results are indeed consistent with those of
other papers (e.g., [44]) which follow the same policy as ours.

leveraging the dependencies between features contradicts
the independence assumption built into the MNB classifier.

It is worth noticing that the unbounded versions (I) turn
out to be more competitive than the bounded ones (σ). This
seems to clash with the fact that traditional implementations
of CD(t,D,C) generate values that are always non-negative
and usually upper-bounded by 1. However, allowing the
score to be negative gives the optimiser the opportunity to
discern between positive and negative correlation with the
class, while most FS functions do not draw any distinction
between these two cases. Furthermore, allowing the score
to exceed the bounds [0,1] helps the optimiser to tune the
relative importance of the DD(t, d) and the CD(t,D,C)
factors.

Regarding the baselines, TFGR and TFCHI outperform
the UTW approaches in most cases across REUTERS-21578
and 20NEWSGROUPS, but perform comparably worse in
OHSUMED. This seems to indicate that, although traditional
FS functions succeed in reflecting feature importance, some
adaptation may be required in order to safely incorporate
this score into the weight calculation. Binary is the worst-
performing method (even though it works reasonably well
with the MNB classifier – which was to be expected given
that the classifier was originally designed with binary fea-
tures in mind14). This is a consequence of the fact that binary
weighting disregards term frequency (apart from mere pres-
ence/absence) and term specificity in the collection. Other

14. The particular implementation we use here is able to take advan-
tage of real-valued vectors, though. See [38] for further details.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 11

things being equal, it is noteworthy that both UTW and
STW perform irregularly across different conditions (e.g.,
in the STW group ConfWeight obtained the best average
performance on OHSUMED but the worst on REUTERS-
21578 and 20NEWSGROUPS), without any clear winner in
the respective groups.

The dense representations generated by FASTTEXT per-
form comparably to the best-performing competitor in com-
bination with KNN and RF classifiers in most cases. As
a classifier, FASTTEXT (FT) performed irregularly across
datasets, outperforming several baselines on OHSUMED,
both in terms of FM1 and Fµ1 , but being surpassed by many
UTW and STW methods in combination with SVM and LR
on the other datasets. Those results seem to confirm that
the superiority of deep learning models over traditional
learners is only reached when learning from much larger
text collections.

In our experiments CCA never stands out from the point
of view of accuracy, obtaining scores which are almost
always in-between the worst result and the best result
obtained by the other methods. Despite the fact that CCA
is somehow similar in spirit to LTW, in the sense that
both frameworks aim at optimizing the term weighting
function (following radically different strategies, though),
the weighting functions produced by CCA are often too
complex to interpret. In our experiments, the depth of the
formulae (when viewed as trees of operators and operands)
representing the weighting functions that CCA finds, range
from a minimum of 1 to a maximum of 13; the mode of
the distribution is 5, which already indicates fairly complex
formulae.

Figures 4a and 4b show examples of the learned local
CD(t,D,C) functions in their LTW-L-σ and LTW-L-I vari-
ants, respectively, for a sample class in each dataset. We
also include the actual coordinates (TPR,FPR) for each
of the features. (Similar plots cannot be displayed for the
global variants since global CD(t,D,C) functions depend
on a larger number of coordinates.) Note that all learned
functions agree that the most important terms are those
characterized by a high TPR and a very low FPR. However,
different cases give rise to different shapes15. The LTW-L-I
versions tends to generate values that are sometimes higher
than 1, and even smaller than 0 under certain conditions,
e.g., when FPR moves away from low values (see Figure
4b, top) or when TPR has very low values (see Figure
4b, bottom). Note also that the plots from 20NEWSGROUPS
bear some resemblance to information gain (see Figure 1,
top), while the plots from OHSUMED behave somehow
similarly to the ones relative to relevance frequency (Figure
2, bottom). Besides the fact that there exists some fundamen-
tal differences between the two (e.g., the one resembling
information gain is almost symmetric with respect to the
polarity of the correlation, while the other is not), it is
interesting to see how LTW “decides” automatically the best
shape to develop for each of the binary problems at hand.
That this function is potentially different for each problem

15. We verified that the shapes are consistent through different runs,
with negligible variations among them. In additional experiments we
forced the CD(t,D,C) function to mimic information gain in a pre-
training phase. This had essentially no impact on the final shape.

UTW STW LTW

Bi
na

ry

TF Lo
gT

F

TF
ID

F

Lo
gT

FI
D

F

BM
25

TF
G

R

TF
C

H
I

C
on

fW
ei

gh
t

TF
R

F

D
en

se

C
C

A

L W
-L

-σ

L W
-L

-I

L W
-G

-σ

L W
-G

-I

F
M 1

LW-L-σ †† †† † † † † † † †† - ††
LW-L-I †† †† †† † † † † † † † † †† - ††
LW-G-σ -
LW-G-I †† -

F
µ 1

LW-L-σ †† †† †† † † † †† †† † † † †† - ††
LW-L-I †† †† † † † † †† †† † † † †† - ††
LW-G-σ -
LW-G-I † -

TABLE 3: Wilcoxon signed-rank tests of statistical signifi-
cance of the difference in performance between LTW vari-
ants (rows) and all tested methods (columns), at confidence
levels α = 0.05 (†) and α = 0.005 (††).

was not necessarily to be taken for granted, i.e., the opti-
mised function might have exhibited a similar pattern across
problems. These examples support our intuition that the
optimal CD(t,D,C) function may neither be unique, nor
universal (thus, not liable to be captured by a fixed formula,
as done in standard weighting approaches, supervised and
unsupervised alike), but can instead be learned for each
specific classification problem.

5.7 Statistical Significance
In Table 3 we report the results of our statistical significance
tests. The differences between the local variants of LTW
and the UTW baselines are statistically significant in all
cases. In terms of FM1 and regarding the STW approaches,
LTW-L-σ is significantly superior only to TFRF, while LTW-
L-I significantly outperforms all STW baselines but TFGR
and Dense. In terms of Fµ1 , both LTW-L-σ and LTW-L-I
are always superior to the STW baselines. There are no
significant differences in performance between the local
variants according to the test. Finally, the global variants
do not prove superior, in a statistically significance sense, to
any of the baselines. Concerning the global variants, LTW-
G-I always proves superior to LTW-G-σ.

Since the optimization procedure has a random compo-
nent we analyze the variation in performance across the
10 runs in terms of standard deviation (SD); no difference
worth noticing results from different random seed initializa-
tions. Specifically, the SD of FM1 across runs varies between
0.0018 (in 20NEWSGROUPS using LR and LTW-L-I) and
0.0178 (in REUTERS-21578 using MNB and LTW-L-σ), with
an expected value of 0.0082. Similarly, the SD of Fµ1 varies
between 0.0017 (in 20NEWSGROUPS using SVM and LTW-
L-I) and 0.0179 (in OHSUMED using MNB and LTW-G-I),
with an expected value of 0.0072. All in all, we find the
local variants to be slightly more stable (in terms of SD)
than the global ones across learners and datasets (0.0076 vs.
0.0088 in FM1 , and 0.0043 vs. 0.0099 in Fµ1 , respectively),
while there are no noticeable differences between bounded
and unbounded versions in this respect.

5.8 A Note on Convergence and Efficiency
As a learning procedure, LTW is exposed to the typical
problems that arise in the realm of optimization methods.
Notwithstanding this, we observe that the different models
converge smoothly to good solutions in the parameter space

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 12

tpr

0.00
0.05

0.10
0.15

0.20
0.25

0.30
0.35

fpr

0.00

0.05

0.10

0.15

0.20

0.2

0.0

0.2

0.4

0.6

0.8

1.0

tpr

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

fpr

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

tpr

0.0
0.1

0.2
0.3

0.4
0.5

fpr

0.0

0.1
0.2

0.3
0.4

0.5

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a)

tpr

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

fpr

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

4

2

0

2

4

6

tpr

0.00
0.05

0.10
0.15

0.20
0.25

0.30
0.35

fpr

0.00

0.05

0.10

0.15

0.20

2

0

2

4

6

8

tpr

0.0
0.1

0.2
0.3

0.4
0.5

fpr

0.0

0.1
0.2

0.3
0.4

0.5

15
10
5
0

5

10

15

20

25

30

(b)

Fig. 4: Plots of the LTW-L-σ variant (a) and LTW-L-I variant (b) on (from top to bottom) REUTERS-21578 (earn),
20NEWSGROUPS (misc.forsale), OHSUMED (Respiratory Tract Diseases).

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 13

(as demonstrated in classification performance), with low
tendency to overfit. Figure 5 shows the convergence trends
for LTW-L-I for the same sample classes used in Figure 4
(we observe that all the LTW variants we propose and all
the classes from our three datasets exhibit a qualitatively
similar behaviour in terms of convergence). Note that, in all
cases, an early termination is activated before the maximum
number of iterations is reached. That is, irrespectively of the
ongoing reduction in training loss, the process terminates
when no further improvement is recorded in a valida-
tion set. Apart from preventing overfitting, this mechanism
speeds up the optimization time noticeably.

Although execution times depend largely on the imple-
mentation and the hardware, it is fair to note that LTW
approaches are slower than UTW methods and most STW
methods (with the exception of CCA). For example, on the
same machine16 and on average, it tales less than a second
for any UTW to compute term weights for the REUTERS-
21578 collection, while STW requires 23 seconds and LTW
requires 62 seconds. Despite the increase in execution time,
it is also fair to note that this penalty is affordable, since the
time bottleneck still lies on the tasks of training the classi-
fier and optimizing the hyperparameters in the validation
phase, which are run once for all. Additionally, given the
continuous improvements and massive parallelization of
new GPUs, it would not be surprising to see this difference
in performance to considerably soften in the near future.17

CCA is by far the slowest method among those considered
in our experiments: although the execution time in any
genetic algorithm depends on many variables (number of
iterations, population size, etc.), on average it takes no less
than 1,005 seconds for our (highly parallelized) implementa-
tion of CCA to evolve the weighting function for each class
of REUTERS-21578, 3,235 seconds for 20NEWSGROUPS, and
3,075 seconds for OHSUMED.

6 WOULD LEARNING THE DD(t, d) FACTOR ALSO
HELP?
So far we have framed the LTW framework as one that
learns the IDF-like component (the CD(t,D,C) factor)
alone, relying on a predefined and fixed DD(t, d) function
for handling the term frequency component. Despite the fact
that the above is consistent with previous STW literature, it
might seem legitimate to also try to learn the DD(t, d) com-
ponent. In fact, one might argue for explicitly optimizing
also the DD(t, d) factor (instead of using e.g., a predefined
log-scaled function) by saying that the impact of term fre-
quency on the importance of a feature might in principle be
captured by functions different from the ones routinely used
for this, e.g., by functions that are not necessarily monotonic.
In this section we report on experiments we have conducted

16. All timings were recorded on the same machine, equipped with
a 12-core processor Intel Core i7-4930K at 3.40GHz with 32 GB of RAM
and an Nvidia GeForce GTX 1080, under Ubuntu 16.04 (LTS)

17. FASTTEXT is peculiar in this respect, since the document rep-
resentation phase and the classifier training phase are undertaken
simultaneously. On average, it tales 10 seconds to process REUTERS-
21578, 31 seconds to process OHSUMED (we use 100 epochs for both),
and 79 seconds to process 20NEWSGROUPS (500 epochs).

Fig. 5: Convergence trends of LTW-L-I variants. From
top to bottom: REUTERS-21578 (earn), 20NEWSGROUPS
(misc.forsale), OHSUMED (Respiratory Tract Diseases).

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 14

FM1 Fµ1
REUTERS-21578 0.586 (-6.84%) 0.865 (-1.04%)
20NEWSGROUPS 0.623 (-1.01%) 0.645 (-0.70%)
OHSUMED 0.639 (-1.52%) 0.685 (-0.41%)

TABLE 4: LTW-TF performance and relative improvement
with respect to LTW-L-I.

in order to ascertain whether explicitly optimizing also the
DD(t, d) factor might be beneficial.

To this aim, we have investigated a variant of the Local
LTW architecture (see Figure 3(a)) in which the left branch
is replaced by a component modelled by equations

ĥt = ReLU([ftd]×W4 + b4)

dd(t, d) = ReLU(ĥt ×W5 + b5)
(20)

where Wi and bi (for i ∈ {4, 5}) are the new parameters
to be learned alongside the previously defined set of pa-
rameters Wi and bi (for i ∈ {1, 2, 3}). In order to preserve
sparsity, we force dd(t, d) to be 0 if feature t does not occur
in document d.

For this experiment we consider 100 hidden units in
layer ĥ, which yield (1× 100 + 100) + (100× 1 + 1) = 301
additional parameters, and apply a 0.2 dropout to neurons
in the hidden layer. We leave the rest of the parameters
untouched.

Table 4 shows the results we have obtained for this
variant (here denoted LTW-TF). For the sake of clarity, we
only report the results for the SVM learner (all other learners
displayed similar patterns), together with the percentage of
relative improvement with respect to the LTW counterpart
(we here choose the LTW-L-I variant) that does not optimize
the DD(t, d) component.

The results show that explicitly learning the DD(t, d)
component does not bring about any advantage. Actu-
ally, doing it degrades performance (and, according to the
Wilcoxon signed-rank test, this difference is statistically
significant at confidence level α = 0.005). This might come
as a surprise, given that LTW-TF has more parameters than
LTW-L-I, which means it could well have learned the log-
scaled version that LTW-L-I uses if this is indeed the best
choice.

So, why is LTW-TF not superior? In principle, one might
think that the proposed model is inadequate, which would
imply that LTW-TF is not able to learn any meaningful
DD(t, d) function. However, that this is not the case can
be seen by inspecting the actual functions that the model
learns, that do seem meaningful. As an example, Figure 6
plots the functions learned for the same example classes
used for Figures 4 and 5, and compares them with typical
functions used to instantiate the DD(t, d) factor (all func-
tions are normalized so as to facilitate their comparison).
Indeed, the functions that the model learns seem meaning-
ful. For example, for the REUTERS-21578 example class (see
Figure 6(top)) the learned function is increasing between
low (ftd = 0) to middle frequencies (ftd = 7), then decreases
until ftd > 20 and is 0 thereafter; this pattern is aligned with
Luhn’s intuition that the most important words are charac-
terized by intermediate frequencies while words that are too

rare or too frequent should instead be attributed low impor-
tance. In the case of 20NEWSGROUPS (see Figure 6(middle))
the learned function displays a monotonic and quasi-linear
behaviour from approximately 0.5 onwards; this resembles
another well-known instantiation of the DD(t, d) factor, i.e.,
the 0.5 + 0.5+ftd

max(ftd)
function already documented in past IR

literature (see, e.g., [1], [16]). Also in OHSUMED (see Figure
6(bottom)) the model seems to have found meaningful pat-
terns, somehow resembling the logarithmic variants of the
DD(t, d) factor. We have observed similar (and analogously
meaningful) patterns for the other classes too. In sum, it
is clear that the degradation in performance observed in
Table 4 cannot be explained by the supposed inability of the
DD(t, d) branch of the LTW-TF architecture to learn mean-
ingful functions. Rather, our conjecture is that the increase
in the number of parameters complicates the optimization
procedure more than it improves the model flexibility, and
that the net effect is a model more difficult to optimize.

7 CONCLUSIONS

While standard (unsupervised) term weighting approaches
do not leverage the distribution of the term across the
classes, supervised ones are able to exploit this information.
However, the improvements that these supervised methods
have shown with respect to their unsupervised variants
have not been, so far, systematic. After discussing the possi-
ble causes of this, we have discussed our conjecture that
a pre-defined “Holy Grail” formula for supervised term
weighting, after all, may not exist. Based on this intuition
we have proposed “Learning to Weight”, a framework for
learning a supervised term weighting function tuned on the
available training set. We have shown several instantiations
of this framework to consistently outperform previously
propised (unsupervised or supervised) term weighting ap-
proaches, on several standard datasets and using different
learning algorithms for training classifiers. The analysis of
the weighting functions that our algorithm has learned
supports our hypothesis that the optimal geometrical shape
of the function is dependent on the underlying data distri-
bution.

From the point of view of the optimization processes (in
particular: the architecture of the neural networks) our ap-
proach presents some novelty as well, since the CD(t,D,C)
part of the supervised term weighting function may be
thought of as a regulariser operating on feature statistics.
That is, the architecture we propose can be interpreted
as a traditional feedforward network (the DD(t, d) part
and logistic regressor) which is regularised (through the
CD(t,D,C) part) with constant feature statistics (extracted
from the matrix columns) that control the information flow
of the examples (i.e., the matrix rows). In the future it may
be worthwhile to experiment with such kind of regulariser
outside the scope of text classification.

Directions for future work include investigating the in-
clusion of more elaborated statistics about the correlation
between features and classes (such as, e.g., Kullback-Leibler
divergence, Fisher Information, or other feature scoring
functions). We also plan to test “Learning to Weight” in mul-
ticlass classification settings, i.e., by considering all classes

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 15

0 5 10 15 20 25 30

ftd

0.0

0.2

0.4

0.6

0.8

1.0
Ohsumed (Respiratory Track Diseases)

learned
1+ log(ftd)

log(1+ ftd)

ftd

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0
Reuters-21578 (earn)

learned
1+ log(ftd)

log(1+ ftd)

ftd

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

d
d
(t
,d
)

d
d
(t
,d
)

d
d
(t
,d
)

20 Newsgroups (misc.forsale)

learned
1+ log(ftd)

log(1+ ftd)

ftd

ftd

ftd

Fig. 6: Learned TF-like functions for LTW-TF on (from
top to bottom) REUTERS-21578 (earn), 20NEWSGROUPS
(misc.forsale), OHSUMED (Respiratory Track Diseases).

jointly via global policies. It would also be interesting to
extend the framework so as to jointly learn not only the
DD(t, d) function but also its normalisation component.
Finally, we believe that “Learning to Weight” might in
principle also be useful in other tasks related to text clas-
sification, such as in learning to rank or feature selection.

REFERENCES

[1] G. Salton and C. Buckley, “Term-weighting approaches in au-
tomatic text retrieval,” Information Processing and Management,

vol. 24, no. 5, pp. 513–523, 1988.
[2] G. Paltoglou and M. Thelwall, “A study of information retrieval

weighting schemes for sentiment analysis,” in Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics
(ACL 2010), Uppsala, SE, 2010, pp. 1386–1395.

[3] J. Zobel and A. Moffat, “Exploring the similarity space,” SIGIR
Forum, vol. 32, no. 1, pp. 18–34, 1998.

[4] S. E. Robertson and H. Zaragoza, “The probabilistic relevance
framework: BM25 and beyond,” Foundations and Trends in Infor-
mation Retrieval, vol. 3, no. 4, pp. 333–389, 2009.

[5] H. P. Luhn, “A statistical approach to mechanized encoding and
searching of literary information,” IBM Journal of Research and
Development, vol. 1, no. 4, pp. 309–317, 1957.

[6] K. Spärck Jones, “A statistical interpretation of term specificity and
its application in retrieval,” Journal of Documentation, vol. 28, no. 1,
pp. 11–21, 1972.

[7] S. Na, “Two-stage document length normalization for information
retrieval,” ACM Transactions on Information Systems, vol. 33, no. 2,
pp. 8:1–8:40, 2015.

[8] A. Singhal, C. Buckley, and M. Mitra, “Pivoted document length
normalization,” in Proceedings of the 19th ACM International Con-
ference on Research and Development in Information Retrieval (SIGIR
1996), Zürich, CH, 1996, pp. 21–29.

[9] F. Debole and F. Sebastiani, “Supervised term weighting for
automated text categorization,” in Proceedings of the 18th ACM
Symposium on Applied Computing (SAC 2003), Melbourne, US, 2003,
pp. 784–788.

[10] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the
subset selection problem,” in Proceedings of the 11th International
Conference on Machine Learning (ICML 1994), New Brunswick, US,
1994, pp. 121–129.

[11] Y. Yang and J. O. Pedersen, “A comparative study on feature selec-
tion in text categorization,” in Proceedings of the 14th International
Conference on Machine Learning (ICML 1997), Nashville, US, 1997,
pp. 412–420.

[12] I. Batal and M. Hauskrecht, “Boosting KNN text classification
accuracy by using supervised term weighting schemes,” in Pro-
ceedings of the 18th ACM Conference on Information and Knowledge
Management (CIKM 2009), Hong Kong, CN, 2009, pp. 2041–2044.

[13] P. Soucy and G. W. Mineau, “Beyond TFIDF weighting for text
categorization in the vector space model,” in Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI 2005),
Edinburgh, UK, 2005, pp. 1130–1135.

[14] M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and traditional
term weighting methods for automatic text categorization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31,
no. 4, pp. 721–735, 2009.

[15] X. Quan, L. Wenyin, and B. Qiu, “Term weighting schemes for
question categorization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 5, pp. 1009–1021, 2011.

[16] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
2nd ed. Addison Wesley, 2011.

[17] G. Salton, Ed. Englewood Cliffs, US: Prentice-Hall, 1971.
[18] J. S. Whissell and C. L. A. Clarke, “Improving document clustering

using okapi BM25 feature weighting,” Inf. Retr., vol. 14, no. 5, pp.
466–487, 2011.

[19] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Computing Surveys, vol. 34, no. 1, pp. 1–47, 2002.

[20] M. Lan, S.-Y. Sung, H.-B. Low, and C.-L. Tan, “A comparative
study on term weighting schemes for text categorization,” in Pro-
ceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN 2005), Montreal, CA, 2005, pp. 546–551.

[21] G. Domeniconi, G. Moro, R. Pasolini, and C. Sartori, “A study on
term weighting for text categorization: A novel supervised variant
of tf.idf,” in Proceedings of 4th International Conference on Data
Management Technologies and Applications (DATA 2015), Colmar, FR,
2015, pp. 26–37.

[22] M. Haddoud, A. Mokhtari, T. Lecroq, and S. Abdeddaı̈m, “Com-
bining supervised term-weighting metrics for SVM text classifica-
tion with extended term representation,” Knowledge and Informa-
tion Systems, vol. 49, no. 3, pp. 909–931, 2016.

[23] N. Shanavas, H. Wang, Z. Lin, and G. I. Hawe, “Supervised graph-
based term weighting scheme for effective text classification,” in
Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016), The Hague, NL, 2016, pp. 1710–1711.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2883446, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. YY, DECEMBER 2018 16

[24] D. Wang and H. Zhang, “Inverse-category-frequency based super-
vised term weighting schemes for text categorization,” Journal of
Information Science and Engineering, vol. 29, no. 2, pp. 209–225, 2013.

[25] H. Wu, X. Gu, and Y. Gu, “Balancing between over-weighting
and under-weighting in supervised term weighting,” Information
Processing and Management, vol. 53, no. 2, pp. 547–557, 2017.

[26] Y. Kim and O. Zhang, “Credibility adjusted term frequency: A
supervised term weighting scheme for sentiment analysis and
text classification,” in Proceedings of the 5th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and Social Media Analysis
(WASSA 2014), Baltimore, US, 2014, pp. 79–83.

[27] T. T. Nguyen, K. Chang, and S. C. Hui, “Supervised term weight-
ing for sentiment analysis,” in Proceedings of the 9th IEEE Interna-
tional Conference on Intelligence and Security Informatics (ISI 2011),
Beijing, CN, 2011, pp. 89–94.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[29] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Proceedings of the 27th Annual Conference on Neural
Information Processing Systems (NIPS 2013), Lake Tahoe, US, 2013,
pp. 3111–3119.

[30] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” Transactions of the Asso-
ciation for Computational Linguistics, vol. 5, pp. 135–146, 2017.

[31] E. Grave, T. Mikolov, A. Joulin, and P. Bojanowski, “Bag of tricks
for efficient text classification,” in Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguis-
tics (EACL 2017), Valencia, ES, 2017, pp. 427–431.

[32] H. M. de Almeida, M. A. Gonçalves, M. Cristo, and P. Calado,
“A combined component approach for finding collection-adapted
ranking functions based on genetic programming,” in Proceedings
of the 30th ACM International Conference on Research and Development
in Information Retrieval (SIGIR 2007), Amsterdam, NL, 2007, pp.
399–406.

[33] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, pp. 861–874, 2006.

[34] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[35] W. Hersh, C. Buckley, T. Leone, and D. Hickman, “OHSUMED: An
interactive retrieval evaluation and new large text collection for
research,” in Proceedings of the 17th ACM International Conference
on Research and Development in Information Retrieval (SIGIR 1994),
Dublin, IE, 1994, pp. 192–201.

[36] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” in Proceedings of the 10th
European Conference on Machine Learning (ECML 1998), Chemnitz,
DE, 1998, pp. 137–142.

[37] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[38] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the
poor assumptions of Naive Bayes text classifiers,” in Proceedings of
the 20th International Conference on Machine Learning (ICML 2003),
Washington, US, 2003, pp. 616–623.

[39] T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for Compu-
tational Linguistics (NAACL 2013), Atlanta, US, 2013, pp. 746–751.

[40] M. Abadi and other 39 authors, “Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed systems,” 2016,
arXiv:1603.04467.

[41] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[43] T. Salles, M. Gonçalves, V. Rodrigues, and L. Rocha, “Broof:
Exploiting out-of-bag errors, boosting and random forests for
effective automated classification,” in Proceedings of the 38th ACM
Conference on Research and Development in Information Retrieval
(SIGIR 2015), Santiago, CL, 2015, pp. 353–362.

[44] D. Zhang, J. Wang, X. Zhao, and X. Wang, “A Bayesian hierarchical
model for comparing average F1 scores,” in Proceedings of the 15th

IEEE International Conference on Data Mining (ICDM 2015), Atlantic
City, US, 2015, pp. 589–598.

Alejandro Moreo Fernández received a PhD in
Computer Sciences and Information Technolo-
gies from the University of Granada in 2013. He
is a Postdoctoral Fellow at Istituto di Scienza e
Tecnologie dell’Informazione “A. Faedo”, which
is part of the National Research Council (CNR).
His research interests include deep learning and
representation learning, with particular focus on
transfer learning for text classification. Contact
him at alejandro.moreo@isti.cnr.it

Andrea Esuli is a researcher at Istituto di
Scienza e Tecnologie dell’Informazione “A.
Faedo”, which is part of the National Re-
search Council (CNR). He received a PhD
in Information Engineering from University of
Pisa. His research interests include machine
learning and information retrieval. In 2010 he
won the European “Cor Baayen Award” as a
“promising young researcher in computer sci-
ence and applied mathematics”. Contact him at
andrea.esuli@isti.cnr.it.

Fabrizio Sebastiani received his “Laurea” de-
gree (summa cum laude) in Computer Science
from the department of Computer Science of the
University of Pisa in 1986. A former Associate
Professor at the University of Padova and a for-
mer Principal Scientist at the Qatar Computing
Research Institute, he is currently a Senior Re-
searcher at ISTI-CNR. His current research in-
terests are at the intersection of text mining and
machine learning, with particular emphasis on
text classification, information extraction, opinion

mining, sentiment analysis, and their applications. He is the former co-
Editor-in-Chief of Foundations and Trends in Information Retrieval (Now
Publishers), an Associate Editor for ACM Transactions on Information
Systems (ACM Press) and Online Social Networks and Media (Else-
vier), a member of the Editorial Boards of Information Retrieval Journal
(Kluwer) and PeerJ Computer Science, and a former member of the
Editorial Boards of IEEE Transactions on Affective Computing (IEEE
Press), Information Processing and Management (Elsevier), Journal
of the Association for Information Science and Technology (Wiley),
AI Communications (IOS Press), and ACM Computer Reviews (ACM
Press). Contact him at fabrizio.sebastiani@isti.cnr.it

