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Abstract—In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the

document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks

characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take

into account the distribution (as estimated from training data) of the term across the classes of interest. Although “supervised term

weighting” approaches that use this intuition have been described before, they have failed to show consistent improvements. In this

article, we analyze the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism, we

propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting

function optimized on the training set of interest; we dub this approach Learning to Weight (LTW). The experiments that we run on

several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting

approaches in text classification.

Index Terms—Term weighting, supervised term weighting, text classification, neural networks, deep learning

Ç

1 INTRODUCTION

IN information retrieval (IR) and related disciplines, where
each textual document is represented as a vector of terms

(a.k.a. “features”), term weighting consists of computing a
numerical score that reflects the importance of a given term t
for a given document d [1]. Once the designer has decided
what should constitute a “term” (e.g., a word, or the mor-
phological root of a word, or a character n-gram, etc.), and
has thus decided what a vector consists of in the system, the
term weighting method is responsible for filling out the vec-
tor that will represent a specific document. Once filled, this
vector is fed to the module responsible for computing docu-
ment-document similarity (when ad hoc search, or text clus-
tering, are the tasks of interest), or to the module responsible
for training a classifier, or to the classifier itself (in the case of
text classification). Different term weighting methods gener-
ate different vectors for the same document, thus attributing
to the document different semantic interpretations. “Good”
term weighting methods are thus of fundamental impor-
tance for delivering good search/clustering/classification
accuracy.

Term weighting approaches widely used in IR include
TFIDF and BM25; loosely speaking, both methods (as long
as practically all other term weighting methods in the litera-
ture) rely on the same principles, i.e., (a) that terms that
occur more frequently in the document (i.e., terms with
high “term frequency”) are more relevant to the document,
and (b) that terms that occur in fewer documents (i.e., terms
with high “inverse document frequency”) are more relevant
tout court. Different interpretations of these principles lead
to the many term weighting formulae proposed in the

literature [1], [2], [3]. However, practically all such formulae
share a common structure. To see this, let us take one of the
many variants of TFIDF, i.e.,

TFIDFðt; d;DÞ ¼ log ð1þ ftdÞ � log jDj
n

(1)

and let us take BM25, i.e.,

BM25ðt; d;DÞ ¼ ðk1 þ 1Þ � ftd
k1 ð1� bÞ þ b � dl

avdl

� �þ ftd

� log jDj � nþ 0:5

nþ 0:5

� � (2)

as examples. Here, t is the term and d is the document
for which the score is being computed, D is the collec-
tion of documents (or: the set of training documents, in
a text classification context), ftd is the raw frequency
(i.e., the number of occurrences) of term t in document
d, n � jfd0 2 D : t 2 d0gj is the number of documents con-
taining the term, dl and avdl are the length of d (i.e., the
number of term occurrences that d contains) and the
average length of the documents in D, and k1 and b are
two parameters (typically set to 1.2 and 0.75, respec-
tively [4]). Leaving aside the mathematical details for
the moment being, the important thing to note is that
the right-hand side of both equations consists of the
product of two factors, i.e., a document-dependent factor
(the leftmost one), which depends on the term’s fre-
quency in the document [5], and a collection-dependent
factor (the rightmost one), which depends on the rarity
/ specificity of the term in the collection [6]. Accord-
ingly, many term weighting functions TW share the
common structure

TWðt; d;D; CÞ ¼ DDðt; dÞ � CDðt; D; CÞ; (3)

where DDðt; dÞ and CDðt;D; CÞ are two “abstract”, generic
functions representing the document-dependent and the
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collection-dependent factors, respectively.1Aside from these
two factors, in many term weighting functions there is a
third component in the weighting process, i.e., the normal-
isation component [3], [7], [8], whose aim is to factor out docu-
ment length. In variants of Equation (1) it often takes the
form of a denominator that normalises the entire function,
e.g., implementing cosine normalisation; in Equation (2),
instead, a normalisation component is already present in
the denominator of the first factor.

The weighting functions of Equations (1) and (2) are
unsupervised, i.e., they do not leverage the class labels of the
training data when these latter are available. However, in
tasks (such as text classification) characterised by the pres-
ence of training data it seems logical to think that one could
take advantage of the information contained in these labels;
this is the principle at the basis of Supervised Term Weighting
(STW) [9]. The main intuition that underlies STW is that, in
the presence of training data, the CDðt;D;CÞ factor in
Equation (3), which measures the discrimination power of
term t independently of any particular document d, can be
instantiated by means of a function that measures such dis-
crimination power in a manner more specific to the task at
hand (e.g., classification). In other words, while a tradi-
tional unsupervised CDðt;D;CÞ function reflects the distri-
bution of t in the collection (and does not depend on the
class labels C), STW replaces it with a function that reflects
this distribution conditioned on C; in this way, a higher
weight is thus given to those terms whose distribution in
the training data is better correlated with the distribution of
the labels.

Several metrics could be directly borrowed from the liter-
ature as candidates for this supervised CDðt;D; CÞ factor.
Of particular interest are the feature-scoring functions (here-
after: “FS functions”) used in “filter-style” feature selection
[10], [11]. Previous work in STW [9], [12], [13], [14], [15]
has focused on identifying a FS function that performs
well when used to instantiate the CDðt;D;CÞ factor in
Equation (3); the most widely used such functions include
chi-square (denoted x2), which evaluates the mutual statisti-
cal dependence of two random variables, and information
gain (a.k.a. mutual information, see Equation (4)), which
measures the reduction in the entropy of one random vari-
able (here: the class label) caused by the observation of
another variable (here: the presence/absence of the term).

In STW, the CDðt; D; CÞ component of Equation (3) is
instantiated by one of these FS functions (e.g., information
gain); unlike the second factors of Equations (1) and (2),
these feature-scoring functions do depend on C, i.e., on
the set of classes of interest. In this article we will restrict
our attention to the binary classification case, where
C ¼ fc; cg (with c indicating the complement of class c); we
leave the extension to the multiclass case (i.e., jCj > 2) to
future work.

Despite the fact that all STW methods (a) do have an
intuitive basis, and (b) have shown some success in empiri-
cal evaluations, there are no clear indications that one of
them is consistently superior to the others. This means that

a system designer has to resort to a trial-and-error method
on a validation set in order to select the best-performing
weighting criterion for the application of interest. This
absence of a clear winner in the supervised term weighting
camp may indicate that STW is yet to be fully understood;
we attempt to provide some deeper insight on the nature of
STW in Section 3.

In this article we propose a STW framework for text clas-
sification that learns the CDðt;D;CÞ function from the train-
ing data; we call this framework Learning to Weight (LTW).
The rationale behind LTW is that past work on term weight-
ing (either unsupervised or supervised) suggests that
whether a specific CDðt;D;CÞ function is optimal or not is
data-dependent, which means that it may be better to
directly learn the optimal function from the data.

We propose various instantiations of this framework,
each of them relying on neural network models that learn
this function via optimization. It is important to remark that
our goal here is not producing word embeddings or dense
representations of documents. Instead, we resort to neural
networks as a means of learning the optimal STW function
that is to be applied to each (nonzero) element of a sparse
vector of term frequencies. In order to gain generality, the
optimization process we propose is independent of the
learning algorithm used for training the classifier (and of
the loss minimized by this algorithm), and is instead based
on solving the simpler auxiliary problem of improving the
linear separation between the positive and negative exam-
ples. The experiments we have conducted show that our
method outperforms previous term weighting approaches
for text classification. Furthermore, our exploration of the
learned function brings about some interesting insights on
the geometrical shape of the “ideal” CDðt;D;CÞ function.

The remainder of the article is structured as follows.
Section 2 reviews previous work on supervised term weight-
ing, while Section 3 analyses the problems inherent in term
weighting for text classification. Section 4 presents our LTW
approach, followed by Section 5 in which we discuss the
experimental evaluation we have carried out. In Section 6 we
discuss whether it might make sense to also learn, aside from
the CDðt;D;CÞ factor, also the DDðt; dÞ factor. Section 7 con-
cludes and outlines possible avenues for future research.

2 RELATED WORK

The history of term weighting goes back to the earliest vec-
tor-based models and probabilistic models of IR, which
were developed in the ’60s (see e.g., [16, Section 3]). Two
contributions that have withstood the test of time, and that
form the basis of nowadays’ term weighting functions, are
the two notions that we have already discussed in Section 1,
i.e., term frequency (whose origins can be traced back to the
development of the SMART system [17]) and inverse docu-
ment frequency (which was first formalized in [6]). Many var-
iants of Equations (1) and (2), which both combine the two
notions in one single formula, have been developed over
the years and tested against each other (for two large-scale
comparisons see [1], [3]). While these two notions were orig-
inally devised for text search, over the years they have been
adopted in an essentially unchanged form for other text
mining tasks, such as text clustering (see e.g., [18]) and text
classification (see e.g., [19, Section 5.1]).

Supervised Term Weighting. While this “acritical” adoption
seems justified for clustering, which is unsupervised in

1. The C parameter in TWðt; d;D;CÞ and CDðt;D;CÞ represents the
set of classes, and is thus relevant only in text classification (or related)
contexts. While functions used in ad hoc retrieval, such as those of Equa-
tions (1) and (2), do not depend on it, we include this parameter
because it will prove useful when discussing instantiations of Equa-
tion (3) in text classification contexts.
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nature, it seems not for classification, where additional infor-
mation useful for weighting purposes can be extracted from
training examples. This idea is at the heart of supervised
term weighting. STW goes back to 2003, when Debole and
Sebastiani [9] proposed to reuse the scores obtained from FS
functions during (supervised) feature selection, in order to
instantiate theCDðt;D;CÞ factor of Equation (3), i.e., as a sub-

stitute of the more conventional log jDj
n and log ðjDj�nþ0:5

nþ0:5 Þ fac-
tors of Equations (1) and (2). The three variants investigated
in that work used chi-square (Equation (4)), information gain
(Equation (5)), and gain ratio (Equation (6)) as instances of
CDðt;D;CÞ, i.e.,

x2ðt;D;CÞ ¼ jDjðPrðt; cÞ � Prðt; cÞ � Prðt; cÞ � Prðt; cÞÞ2
PrðtÞ � PrðtÞ � PrðcÞ � PrðcÞ (4)

IGðt;D;CÞ ¼
X

t02ft;tg

X
c02fc;cg

Prðt0; c0Þ log Prðt0; c0Þ
Prðt0ÞPrðc0Þ (5)

GRðt;D;CÞ ¼ IGðt;D; CÞ
�Pc02fc;cg Prðc0Þlog 2Prðc0Þ

(6)

where C ¼ fc; cg and Pr denotes a probability on the event
space of documents (e.g., Prðt; cÞ is the probability that a
random training document does not contain t and belongs
to class c). However, their results (using Support Vector
Machines as the learning algorithm) did not show STW to
bring about consistent improvements over TFIDF.

A subsequently proposed STW approach is ConfWeight
[13], which adopts a relevance criterion based on statistical
confidence intervals; the criterion can simultaneously be
used for performing feature selection and term weighting.
At the same time, [20] proposed relevance frequency, refined
in [14] as

RFðt;D;CÞ ¼ log 2þ Prðt; cÞ
maxf 1

jDj ;Prðt; cÞg

 !
(7)

as the instance of the CDðt; D;CÞ factor. STW based on rele-
vance frequency (which we use as a baseline in the experi-
ments of Section 5) was found by [20] to be superior to STW
using x2 or IG, but comparable to standard TFIDF under
certain circumstances.

Experiments similar to the ones of Debole and Sebastiani
[9] were carried out in [12], where instead STW proved use-
ful for improving the classification accuracy of k-Nearest
Neighbours (KNN) classifiers.

Other variations on the same theme are to be found in
[21], [22], [23], [24], [25], while applications of STW to spe-
cific instantiations of text classification, such as question
classification [15] or sentiment classification [26], [27], have
also been reported.

Overall, the results reported in the literature show, as
hinted above, that there is no clear consensus as which vari-
ant of STW is the best, and as to whether STW is indeed
superior or not to standard unsupervised weighting.

Representation Learning. Term weighting document vec-
tors is inherently related to representation learning, an area of
research where neural networks, and in particular deep
learning architectures [28], tend to outperform the competi-
tion. Deep learning allows computational models composed
of non-linear projections to learn effective representations of
the inputs by backpropagating the errors with respect to the

model parameters. In recent work [29] deep learning mod-
els have been used to obtain continuous, dense representa-
tions for words and document vectors. Such methods have
proved effective at modelling word semantics, but require
the processing of very large external text collections in order
to succeed. Bag-of-words approaches to text classification,
which are the context of our LTW work, do not require any
external text collection. In the experiments we include a
comparison with FASTTEXT [30], [31], a top-performing
method based on distributional semantics that uses dense
representations.

In the present work neural networks are not used for
training a text classifier (for this, a neural network or any
other learning algorithm could be used); instead, the ratio-
nale of using neural networks is (a) to exploit their model-
ling flexibility in order to improve the weighting criterion,
and (b) to permit the inspection of the learned weighting
function, in order to allow the experimenter to gain intu-
itions on how an ideal such function looks like.

Learning Term Weights. To the best of our knowledge, the
Combined Component Approach (CCA) is the only previous
approach resembling the idea of learning term weighting
functions. CCA was presented in [32], in the context
of learning to rank. CCA follows a radically different
approach, though, based on composing, via genetic pro-
gramming optimization, complex ranking functions from
20 weighting factors well-known from past literature (e.g.,
tf and idf variants, among others) used as the atomic com-
ponents. Differently from [32], instead of exploring the
(huge – see [3]) space of combinations of previously pro-
posed weighting factors, we take the simpler tpr and fpr sta-
tistics (see Section 4) as the atomic components, and allow
the optimization procedure full freedom. The main differ-
ence between CCA and our method is thus the fact that we
use the supervision directly as input to the weighting func-
tion learning method (in order to compute the tpr and fpr
statistics), while CCA only uses the supervision in the eval-
uation phase, i.e., their optimization procedure works pri-
marily by composing unsupervised weighting factors. We
include CCA as one of our baselines in the experiments of
Section 5.

3 PITFALLS IN SUPERVISED TERM WEIGHTING

FUNCTIONS

In this section we analyse some of the typical instantiations
of the components of supervised term weighting functions,
trying to shed some light on the possible reasons why there
is no consensus yet on which among the many available
variants is preferable.

3.1 The DDðt; dÞ Factor
The most frequently used unsupervised variants of the
DDðt; dÞ factor of Equation (3) include the raw frequency of t
in d (Equation (8)) and log-scaled versions of it (Equations (9)
and (10))

DDðt; dÞ ¼ ftd (8)

DDðt; dÞ ¼ 1þ log ftd if ftd > 0
0 otherwise

�
(9)

DDðt; dÞ ¼ log 1þ ftdð Þ: (10)
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In this paper we focus on the CDðt; D;CÞ function; this
allows us to draw a fair comparison with existing STW
methods, which do not address the DDðt; dÞ component of
the weighting function. However, in this section we would
like to discuss a few minor issues that affect traditional
implementations of the DDðt; dÞ function.

The linear version of Equation (8) does not take into
account the fact that a term frequency variation at low fre-
quency values, e.g., from 1 to 3, should be considered much
more relevant than a term frequency variation at high fre-
quency values, e.g, from 11 to 13. For this reason log-scaled
versions such as those of Equations (9) and (10) are usually
preferred, since they better capture frequency variations
observed at low frequency values.

However, the non-linearity of log-scaled versions causes
issues with document length. To illustrate this, let us con-
sider a document d 2 D and a document d0 2 D which con-
sists of two juxtaposed copies of d. The value of ftd0 is
double the value of ftd; since the log transformation is non-
linear, if we use Equations (9) or (10) the cosine-normalised
vectors of d and d0 will not be the same, potentially clashing
with the so-called “normalisation assumption”, according to
which “for the same quantity of term matching, long docu-
ments are no more important than short documents” [3].

3.2 The CDðt;D; CÞ Factor
FS functions have proven useful in filter-style approaches to
feature selection [11]. Feature selection and term weighting
are inherently related, as both tasks build upon a model of
feature importance, which is what FS functions aim to
measure. One might thus expect FS functions to fit the pur-
poses of term weighting (an intuition that has driven a lot
of previous work in STW — see Section 2). However, there
are reasons to believe that a good FS function is not neces-
sarily a good CDðt;D;CÞ component of a term weighting
function. The reason is that our notion of the quality of a FS
function is typically based on its performance as a ranking
function, since FS functions are customarily used in filter-
style feature selection in order to rank features. That is, if fs
is a FS function measuring the degree of importance of a
feature (whatever this might mean), filter-style feature
selection consists of taking the top n ranked features accord-
ing to their fs score.

Note that the numeric values produced by a FS function
can be substantially modified by applying to them any
monotonic non-decreasing function, without affecting the

resulting rankings. For example, the three variants of the IG
function in Fig. 1 produce exactly the same results when
used to rank features, but can result in very different out-
comes when used to instantiate the CDðt; D;CÞ function.
This indicates that, when used in a supervised term weight-
ing formula, for any FS function there is an additional
dimension to be explored for optimization, i.e., monotonic
non-decreasing transformations. Instead of systematically
exploring the space of possible such transformations we
propose to learn the weighting function from scratch on the
training set, without relying on predefined term relevance
functions. This proposal will be detailed in the next section.

4 LEARNING TO WEIGHT

We propose a novel supervised weighting approach that,
instead of relying on any predefined formula, learns a term
weighting function optimised on the available training set;
we call this approach Learning to Weight.2 Essentially, during
training, different term weighting functions (leading to dif-
ferent term weights for the same term-document pair) are
tested, and the function that minimizes the linear separation
between the positive and negative examples of the training
set is chosen. The different term weighting functions that
are tested are generated by neural architectures described
in Section 4.1.

In the rest of the paperwewill use slightly differentmathe-
matical conventions from the ones used in Section 2. In fact,
while the four functions discussed in that section are all for-
mulated in terms of the four variables fPrðt; cÞ;Prðt; cÞ;
Prðt; cÞ;Prðt; cÞg, in reality they are functions of just two free
variables, since the frequency of the class PrðcÞ � Prðt; cÞ þ
Prðt; cÞ in the training set is fixed, and since Prðt; cÞ ¼ PrðcÞ �
Prðt; cÞ and Prðt; cÞ ¼ ð1� PrðcÞÞ � Prðt; cÞ. In the rest of the
paper we will thus express our functions in terms of just two
free variables; however, consistently with the tradition of
ROC analysis [33], as our two free variables we will equiva-
lently choose the true positive rate

TPRðt;D;CÞ ¼ Prðt; cÞ
PrðcÞ (11)

Fig. 1. Plots, from left to right, include information gain (IG) unaltered, information gain cubed, and the cubed root of information gain as a function of
the true positive ratio tpr and the false positive ratio fpr (explained in detail below). Despite being very dissimilar when used as weighting criteria, the
three versions of IG produce identical feature rankings when used as FS functions.

2. We should remark that we do not optimize the weighting function
for a specific test set. The fact that we do not use the test set in any way
while learning the weighting function sets our approach apart from the
realm of transductive learning, and squarely places it within the domain
of inductive learning.
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and the false positive rate

FPRðt;D;CÞ ¼ Prðt; cÞ
PrðcÞ (12)

As a side effect, this change of variables makes it possible to
plot any CDðt;D;CÞ function in 3D space, which allows the
experimenter to quickly gain an understanding on how the
weights are assigned (something that will prove useful in our
analysis of the results in Section 5). Fig. 2 plots the FS func-
tions discussed in Section 2 as a function of the two variables
TPR and FPR of Equations (11) and (12); note that we have
not plotted IGðt;D;CÞ since it differs from GRðt;D;CÞ by a
fixed multiplicative factor only. As expected, the plots reveal
a consensus on the higher importance of positively correlated
terms (those characterized by highTPR and low FPR). Inter-
estingly enough, there are instead discrepancies among these
functions on (i) how to assess the importance of negatively
correlated terms (those with low TPR and high FPR), which
are considered as important as the positively correlated ones
by functions x2 and GR but ignored by RF; or on (ii) how
much the importance of the term changes due to variations in
TPR andFPR.

4.1 Learning the CDðt; D; CÞ Factor
In this work we will learn a weighting function individually
for each binary classification problem. As discussed in
Section 2, in the binary case any function of a contingency
table can be expressed as a function of the two values
TPRðt;D;CÞ and FPRðt;D;CÞ. Our working hypothesis is
that the optimal such function is data-dependent. We thus
propose to use a neural network to learn this function from
data, since neural networks are universal approximators [34].

Concretely, we adopt a multi-layer feedforward network
with one hidden layer, since this architecture, despite being
simple,3 is known to be able to approximate any continuous
function if enough hidden nodes are considered [34].

The CDðt;D; CÞ computation we propose4 is described
by the following equations:

ht ¼ ReLU ½tprt; fprt� �W1 þ b1ð Þ
cdLðt;D; CÞ ¼ s ht �W2 þ b2ð Þ (13)

where ht is the output of the hidden layer, ReLUðxÞ ¼
maxðx; 0Þ is the Rectifier Linear Unit activation function,
½tprt; fprt� is a vector of the two precomputed values
TPRðt; D;CÞ and FPRðt; D;CÞ, respectively, Wi and bi (for
i 2 f1; 2g) are the transformation matrix and the bias term,
and sðxÞ ¼ 1=ð1þ e�xÞ is the logistic function. The model
parameters Wi and bi (for i 2 f1; 2g) are shared across the
model, i.e., the same set of parameters is used in order to
compute the weight of each term, in a convolution-like man-
ner (i.e., all cdLðt;D; CÞ scores are computed in parallel on
each input pair ðtprt; fprtÞ— see the right branch of the net-
work in Fig. 3a). The subscript L stands for feature-local,
since the weight for a feature t is computed from statistics
(tprt and fprt) local to that feature.

Traditional STW approaches have only considered the
local features tprt; fprt as the inputs in order to compute
the CDðt;D; CÞ score. However, one could think of leverag-
ing the global information in the collection in an attempt
to model the possible inter-dependencies among features.
For example, one could think of increasing the CDðt; D;CÞ
score for a feature which, despite not being too strongly
correlated to the class label, has the strongest correlation
among all other features. Note that such kind of considera-
tions remain out of reach for all feature-local methods.

We thus propose an alternative model, dubbed feature-
global, which instead uses the statistics of all features in
order to compute the CDðt;D; CÞ score of a given term. This
variant is described by the set of equations

h ¼ ReLUð½tpr1; fpr1; . . . ; tprT ; fprT � �W1 þ b1Þ
o ¼ sðh�W2 þ b2Þ
cdGðt;D; CÞ ¼ o½t�

(14)

where Wi and bi (for i 2 f1; 2g) are the CDðt;D;CÞ model
parameters (with the samemeaning as above) and o is the out-
put vector containing all CDðt;D;CÞ scores; the CDðt;D;CÞ
for term t is returned via the ½�� operator. In this setup the hid-
den state h is not the result of a separate parallel computation
for each feature, but is instead the output of a single-step com-
putation that takes into account all the features at the same
time (Fig. 3b).

Note that, as the input features for the CDðt;D;CÞ
function, we could opt for the four joint probabilities
Prðt; cÞ;Prðt; cÞ;Prðt; cÞ;Prðt; cÞ, in place of the TPR;FPR
factors. However, this would unnecessarily complicate the
system, roughly doubling the number of parameters and
additionally constraining it to discover the actual degrees of

Fig. 2. Plots, from left to right, of chi-square (x2), gain ratio (GR), and relevance frequency (RF), as a function of the true positive ratio tpr and the false
positive ratio fpr. All plots were generated assumingPrðcÞ ¼ 0:05.

3. As part of this framework, more complex architectures could be
adopted as well; however, this goes beyond the scope of this work (for
which the expressive power of the adopted network is sufficient) and is
something we plan to investigate in the future.

4. Note the difference in notation between the CDðt;D;CÞ function
of Equation (3) and the cdðt;D;CÞ functions of Equations (13) and (14);
the former is an “abstract” function that measures the importance of
term t for dataset D and set of classes C, while the latter are concrete
instantiations of it that we use in this paper. Similarly for the DDðt; dÞ
function of Equation (3) and the ddðt; dÞ function of Equation (15).
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freedom in the input data. Conversely, using both TPR and
FPR (and not, say, just one of them) is essential because
TPR and FPR are altogether defined in terms of all four

joint probabilities (TPR ¼ Prðt;cÞ
Prðt;cÞþPrðt;cÞ is a function of Prðt; cÞ

and Prðt; cÞ while FPR ¼ Prðt;cÞ
Prðt;cÞþPrðt;cÞ is a function of Prðt; cÞ

and Prðt; cÞ). If a method used only one of TPR and FPR, it
would work with incomplete information about how t are c
are correlated.

As a final note, all tprt and fprt inputs for the CDðt;D; CÞ
function (both local and global) are calculated once, at
the beginning, and then fixed during all the optimization
process. Note thus that the only part that varies during the
training process concerns the term frequencies of each used
document vector (i.e., the input of the DDðt; dÞ function)
which is not directly connected to the CDðt;D;CÞ part. For
more discussion on this see Section 7.

4.2 Composing the TW Score
In this study we instantiate the DDðt; dÞ factor with the
function

ddðt; dÞ ¼ log 1þ ftd
dl

� �
(15)

i.e., a log-scaling of the frequencies of terms normalized
by the document-length (dl). Normalizing by the docu-
ment length is a simple way to limit the variation of the
input range to the neural network, at the same time
avoiding the issues related to document length (see Sec-
tion 3.1).

Once the ddðt; dÞ and cdðt;D;CÞ factors are calculated,
they are multiplied in a pointwise manner5 and then nor-
malised via L2 normalisation, i.e.,

lwðt; d;D;CÞ ¼ ddðt; dÞ � cdðt;D;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t2d ddðt; dÞ � cdðt;D;CÞð Þ2

q (16)

where lw stands for learned weights and cdðt;D;CÞ is either
cdLðt;D;CÞ or cdGðt;D;CÞ.

The cdðt;D; CÞ model parameters are optimised to
improve the linear separability of the positive and negative
examples. For that purpose we use a simple logistic regres-
sion model

ŷd ¼ sðlwðt; d;D; CÞ �W3 þ b3Þ (17)

where ŷd is the model prediction. As the loss function we
use the cross-entropy

Lðyd; ŷdÞ ¼ �ydlog ðŷdÞ � ð1� ydÞlog ð1� ŷdÞ (18)

between the true label ld 2 fc; cg mapped into f0; 1g by
means of

yd ¼ 1 if ld ¼ c
0 if ld ¼ c

�
(19)

and the prediction logits ŷd 2 ð0; 1Þ. We use cross-entropy
since it is known to be a good differentiable model of the
error for logistic regression.

It is important to note that the logistic regression layer
defined by W3 and b3 has the sole purpose of propagating
the constraints on the parameters for the CDðt;D; CÞ model.
That is, the logistic regressor is merely used here as an auxil-
iary classifier, and the real output of the system are the
parameters Wi and bi (for i 2 f1; 2g) of the CDðt;D;CÞ func-
tion; the parameters W3 and b3 of the logistic regressor are
set aside once the optimization ends. The choice of using a
simple logistic regression layer is a minimalistic one, allow-
ing to directly correlate the values of the lwðt; d;D; CÞ func-
tion to the class labels, with minimal bias towards the actual
classifier being used. Note that resorting to a more sophisti-
cated classifier (e.g., a deep multi-layer feedforward net-
work) could cause the contribution of the supervised factor
to be diminished, as the (auxiliary) net could well end up
delegating the modelling of complex aspects of the data to
the inner layers. Stacking the simplest possible auxiliary
classifier on top thus forces the quality of the lw layer (the
actual outcome of the model) to be maximized.

Figs. 3a and 3b show the computation graph in the local
and global variants, respectively.

Note that the Learning to Weight framework gives
full control to the optimization process for balancing
the different factors involved in the weighting process.

Fig. 3. Learning to Weight architectures: (a) Local variant and (b) global variant.

5. Note that the tensor resulting from the ddðt; dÞ branch has “shape”
½batchsize; F � while the tensor from cdðt;D;CÞ has “shape” ½1; F �. This
mismatch in the pointwisemultiplication is resolved via “broadcasting”,
a typical operation in any deep learning framework.
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For example, if a dataset can be easily separated by exclu-
sively looking at the frequency of its terms, then the learn-
ing process will force the CDðt; D; CÞ function to mimic
the constant function cdðt; D; CÞ ¼ 1. Otherwise, if the
term frequency adds little information, the optimization
process will try to compensate it by increasing the impor-
tance of the CDðt; D; CÞ factor.

5 EXPERIMENTS

In this section we experimentally compare our Learning to
Weight framework to other supervised and unsupervised
term weighting methods proposed in the literature.6

5.1 Datasets
As the datasets for our experiments we use the popular
REUTERS-21578, 20NEWSGROUPS, and OHSUMED corpora:

� REUTERS-21578 is a publicly available7 test collection
which consists of a set of 12,902 news stories,
partitioned (according to the “ModApt�e” split we
adopt) into a training set of 9,603 documents and a
test set of 3,299 documents. In our experiments we
restrict our attention to the 115 classes with at least
one positive training example. After removing stop-
words, the number of distinct terms amounts to
28,828. This dataset presents cases of severe imbal-
ance, with several classes containing fewer than 5
positive examples.

� 20NEWSGROUPS is a publicly available8 test collection of
approximately 20,000 posts on Usenet discussion
groups, nearly evenly partitioned across 20 different
newsgroups. In this article we use the “harder”
version of the dataset, i.e., the one fromwhich allmeta-
data (headers, footers, and quotes) have been removed
(on this, see also Footnote 13). The dataset contains
101,322 distinct terms after removing stopwords.

� The OHSUMED test collection [35] consists of a set of
MEDLINE documents spanning the years from 1987
to 1991. Each entry consists of summary information
relative to a paper published on one of 270 medical
journals. The available fields are title, abstract,
MeSH indexing terms, author, source, and publica-
tion type. Following [36], we restrict our experiments
to the set of 23 cardiovascular disease classes, and we
use (see http://disi.unitn.it/moschitti/corpora.htm)
the 34,389 documents of year 1991 that have at
least one of these 23 classes. Since no standard
training/test split has been proposed in the litera-
ture we randomly partition the set into a part used
for training (70 percent of the documents) and
a part used for testing (the other 30 percent).
The total number of distinct terms after removing
stopwords is 54,949.

Since the present work deals with the binary case, each
experiment on each of these test collections here consists of
running as many binary classification tasks as there are clas-
ses in the collection.

5.2 Learning Algorithms
As the representation model, in all our experiments we
use a simple unigram model with no stemming or lemmati-
zation. All term weighting approaches are tested in exactly
equal conditions, i.e., we run each combination of a term
weighting method and a learning algorithm individually
for each binary classification problem derived from each
collection. In all cases, we apply local feature selection using
x2 as the feature scoring function and at a reduction ratio of
0.1; this has proven a good setting in text classification [11].

In order to assess the quality of the weighted vectors
we consider the following learning algorithms for training
classifiers:

� Support Vector Machines (SVM) with a linear kernel
[37], an algorithm that finds the hyperplane in high-
dimensional spaces that separates, by the largest
possible margin to the nearest training examples, the
positive and negative examples.

� Logistic Regression (LR), an algorithm that generates
linear models of the probability that a document
belongs to the class, by using the logistic function.
Considering LR in our experiments is interesting
because the LTW framework we define relies on LR
to define the weighting function.

� Multinomial Naive Bayes (MNB), which implements
the na€ıve Bayes algorithm for multinomially distrib-
uted discrete data (though in text classification it is
known to work well also for real-valued weighted
vectors [38]).

� K-Nearest Neighbours, an instance-based learning
algorithm that outputs the class label more frequent
across the k examples most similar to the test exam-
ple; as the measure of similarity we use the euclidean
distance.

� Random Forests (RF), a method which builds an
ensemble of decision trees. The implementation we
use9combines the resulting classifiers by averaging
their probabilistic predictions, instead of returning
themost frequent class output by the individual trees.

We also include the results of running FASTTEXT (FT — [30],
[31]), a state-of-the-art method for text classification based
on an evolution of the WORD2VEC architecture [29], [39] for
text classification. FASTTEXT is not a term weighting method
and is here included for comparison purposes only, i.e., in
order to verify how the text classification pipelines that we
use in our experiments fare with respect to state-of-the-art
text classification methods. Results for the FASTTEXT classi-
fier are only reported for the dense representations that
FASTTEXTproduces, since in its currently available imple-
mentation it is not possible to use the FASTTEXT classifier
with externally generated vectors.

5.3 Evaluation Measures
As the effectiveness measure we use the well-known F1, the
harmonic mean of precision (p) and recall (r) defined as
F1 ¼ ð2prÞ=ðpþ rÞ ¼ ð2TP Þ=ð2TP þ FP þ FNÞ, where TP ,
FP , FN , are the numbers of true positives, false positives,
false negatives, from the binary contingency table. We take
F1 ¼ 1 when TP ¼ FP ¼ FN ¼ 0, since the classifier has
correctly classified all examples as negative.

6. The code for reproducing all the experiments discussed in this
paper is available at https://github.com/AlexMoreo/learning-to-
weight

7. http://www.daviddlewis.com/resources/testcollections/
reuters21578/

8. http://qwone.com/�jason/20Newsgroups/
9. http://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestClassifier.html
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In order to average across all the classes of a given data-
set we compute both micro-averaged F1 (denoted by Fm

1 )
and macro-averaged F1 (denoted by FM

1 ). Fm
1 is obtained by

(i) computing the class-specific values TPc, FPc, and FNc,
(ii) obtaining TP as the sum of the TPc’s (same for FP and
FN), and then applying the F1 formula. FM

1 is obtained by
first computing the class-specific F1 values and then averag-
ing them across the classes.

5.4 Baseline Methods
We choose some relevant unsupervised and supervised
weighting methods as the baselines against which to com-
pare the Learning to Weight framework. The methods
considered in this experimental evaluation are grouped as
follows:

� Unsupervised Term Weighting (UTW) methods:
Binary (the simplest weighting function, that returns
1 if the document contains the term and 0 otherwise),
TF (Equation (8)), LogTF (Equation (9)), TFIDF
(a variant of Equation (1) that uses the raw frequency
of Equation (8) as the DDðt; dÞ component), LogTFIDF
(Equation (1)), and BM25 (Equation (2)).

� Supervised Term Weighting methods: TFCHI (Equa-
tion (4)) and TFGR (Equation (6)), proposed in [9];
ConfWeight [13], and TFRF (Equation (7)), proposed in
[14]. For all STW variants in this evaluation we adopt
the DDðt; dÞ factor defined in Equation (9). We leave
aside TFIG (Equation (5)) since, in binary classifica-
tion, it is equivalent to TFGR, because the only differ-
ence between the two is a constant normalisation
factor that is cancelled out by cosine normalisation.
We also include the dense representations (Dense) that
FASTTEXT produces in this group, since they are condi-
tioned on the class labels [30], [31]. We also consider
the CCA method discussed at the end of Section 2,
suitably adapted to binary text classification, as a fur-
ther STWbaseline.

� Learning to Weight: we consider both local (L –
Equation (13)) and global (G – Equation (14)) ver-
sions for the CDðt;D;CÞ factor. We also investigate a
variant whereby the sigmoid activation function (s)
of the CDðt;D;CÞ factor is replaced by an identity
function (I – thus allowing the model to output
unbounded and negative CDðt;D;CÞ scores). We
thus propose four LTW variants; e.g., LTW-L-s
denotes LTW using the Local CDðt;D;CÞ variant
with the s activation function.

5.5 Implementation Details

We have implemented our method using Tensorflow [40].
In our experiments we apply dropout to the hidden layer
activations (with a drop probability of 0.2) in order to pre-
vent overfitting. We use stochastic optimization relying
on the Adam optimiser [41] with a learning rate of 0.005
(leaving the rest of the parameters set to their default val-
ues, i.e., b1 ¼ 0:9, b2 ¼ 0:999, and � ¼ 1e�0:8), with a batch
size of 100 and shuffling whenever an epoch is com-
pleted. We set the maximum number of iterations to
100,000 steps. However, we use an early stopping crite-
rion, triggered when 20 consecutive validation steps
(each of them run after every 100 training steps) have
shown no improvement. In our experiments the runs

obtain this convergence after an average of 5,780 steps,
ranging from 900 to 18,100. The result scores that we
report for all LTW variants are averages across 10 runs.
For the model architecture we use a size of the hidden
layer equal to 1,000 for the local variant (which actually is
the size of the convolutional filter that works on each fea-
ture separately) and a larger size of 1

2F for the global vari-
ant, where F is the number of distinct terms in the
training set. The rationale behind using a larger size for
the global variant is that it is also meant to model inter-
feature relations.

For the learning algorithms other than FASTTEXT and
CCA we use the implementations provided by Scikit-learn
[42]. For FASTTEXT we use its publicly available implemen-
tation.10 As with all other learners, also with FASTTEXT we
train independent binary classifiers, one for each class. We
leave the learning rate at 0.1 (its default value). Although
the authors recommend to set the epoch parameter (the
number of times a complete pass over the entire set is to
be performed) in the range [5, 50], we have experienced a
consistent improvement in performance across all datasets
when using higher values. We thus vary the number of
epochs in f5; 10; 25; 50; 100; 250; 500g, and the best values
turn out to be 100 for REUTERS-21578 and OHSUMED, and 500
for 20NEWSGROUPS (for which no further improvement is
verified for higher values).

We have reimplemented11 the CCA method according to
the specifications in [32], and adapted it to binary classifica-
tion (in place of ranking, as it was originally devised for).
This means replacing the ranking-oriented evaluation func-
tion used as the fitness function (originally, a combination
of PAVG and FFP4) with F1, which is better suited for classi-
fication (and is also our evaluation measure of choice). We
modify the process for the selection of the best individual so
as to be driven by the classification accuracy of a logistic
regressor12 as measured on a validation set. In our imple-
mentation of CCA we do not consider terminals t19 and t20
since they are inherently defined upon the notion of
“query”, a notion that does not apply to text classification.
All the hyper-parameters are set to the values recom-
mended in [32].

To guarantee fair comparisons between our weighting
methods and the baseline weightingmethods, the parameters
of each classifier are optimised individually, i.e., for each
hweighting method, learning method, binary classi combina-
tion. For all such combinations, optimization is performed on
a subset of the training set used as held-out validation set;
once the parameter values have been chosen, the validation
set is merged again into the training set and the classifier is
retrained. For SVMs and LR we test values for the penalty
parameter C in the set f10�4; 10�3 . . . 104g, and alternatively
consider the “dual” and “primal” optimization variants. For
SVMswe test values for the loss parameter in fhinge; hinge2g.
Adhering to a practice well documented in the literature,

10. https://github.com/facebookresearch/fastText
11. Our implementation of CCA is accessible as part of our code

release.
12. The choice of logistic regression as a proxy has to do with effi-

ciency. In fact, genetic programming is known to be computationally
expensive, and most of its cost is accounted for by the evaluation of the
fitness function. Since the classifier generated by logistic regression is
an efficient one, this has a positive impact on the efficiency of this
evaluation.
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for SVMs we adopt the RBF kernel in the experiments in
which dense vectors are used (i.e., in the experiments that
use the representations produced by FASTTEXT, documented
in rows “Dense” of Tables 1 and 2), while we adopt the linear
kernel when documents are represented by sparse vectors
(i.e., all other experiments). For LR we test both L1 and L2
regularisation. ForMNB, for the a parameterwe test all values
in {0.0, 0.001, 0.01, 0.05, 0.1, 1.0}. For KNN, for the k
parameter we test all values in f1; 3; 5; 15; 30g (a) with all
features, or (b) with dimensionality reduction obtained
by selecting the top f25; 50; 100; 250; 500g features using
the x2 feature scoring function, or (c) with dimensional-
ity reduction obtained via Principal Component Analysis
(PCA) at f64; 128; 256g dimensions. For RF we vary the
number of trees in n 2 f10; 25; 50; 100g, we test both the
Gini and Entropy criteria, and we consider a maximum
number of features in f ffiffiffiffi

F
p

; logF; 1000g, where F is the
total number of features.

5.6 Results
Tables 1 and 2 report the results we have obtained on the
REUTERS-21578, 20NEWSGROUPS,13 and OHSUMED datasets, for
macro- and micro-averaged F1. Values in boldface indicate
the best results obtained with the given learner on the given
dataset, while values in greyed-out cells indicate the LTW
variants that outperform all baselines.

The results indicate that most LTW approaches perform
comparably or better than the baselines in terms of FM

1 , and

TABLE 1
Results on REUTERS-21578, 20NEWSGROUPS, and OHSUMED in Terms of FM

1

REUTERS-21578 20NEWSGROUPS OHSUMED

FM
1 SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT

UTW Binary .519 .579 .489 .493 .562 – .581 .593 .615 .429 .579 – .578 .601 .548 .516 .626 –
TF .592 .599 .490 .496 .555 – .583 .579 .601 .418 .578 – .593 .606 .540 .530 .634 –
LogTF .569 .612 .449 .522 .558 – .611 .619 .571 .470 .570 – .620 .632 .453 .550 .638 –
TFIDF .596 .604 .473 .502 .544 – .598 .609 .594 .492 .592 – .605 .612 .506 .558 .639 –
LogTFIDF .576 .609 .462 .496 .530 – .607 .622 .580 .512 .583 – .614 .636 .491 .574 .643 –
BM25 .554 .582 .462 .509 .561 – .602 .621 .572 .536 .588 – .607 .634 .473 .576 .637 –

STW TFGR .598 .623 .539 .561 .572 – .613 .613 .653 .500 .571 – .508 .546 .299 .566 .621 –
TFCHI .591 .608 .514 .538 .579 – .585 .590 .645 .509 .587 – .478 .514 .267 .590 .626 –
ConfWeight .580 .587 .497 .543 .540 – .588 .577 .578 .485 .569 – .649 .647 .617 .599 .646 –
TFRF .584 .602 .461 .508 .539 – .626 .624 .617 .434 .581 – .635 .634 .552 .477 .640 –
Dense .541 .537 .508 .565 .547 .553 .574 .572 .539 .582 .585 .566 .618 .619 .533 .620 .617 .617
CCA .556 .574 .418 .511 .562 – .581 .578 .604 .487 .579 – .616 .612 .572 .561 .635 –

LTW LTW-L-s .614 .610 .517 .542 .547 – .625 .619 .660 .600 .577 – .642 .642 .596 .543 .624 –
LTW-L-I .629 .619 .502 .583 .553 – .630 .626 .668 .582 .573 – .649 .645 .607 .576 .616 –
LTW-G-s .531 .530 .375 .442 .505 – .541 .534 .537 .278 .514 – .554 .548 .480 .343 .566 –
LTW-G-I .604 .604 .374 .555 .540 – .635 .620 .494 573 .571 – .651 .650 .459 .638 .633 –

TABLE 2
Results on REUTERS-21578, 20NEWSGROUPS, and OHSUMED in Terms of Fm

1

REUTERS-21578 20NEWSGROUPS OHSUMED

Fm
1 SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT SVM LR MNB KNN RF FT

UTW Binary .822 .843 .649 .794 .841 – .595 .609 .623 .449 .595 – .642 .639 .589 .547 .663 –
TF .836 .843 .621 .797 .847 – .596 .592 .598 .436 .593 – .643 .643 .583 .559 .684 –
LogTF .855 .861 .786 .815 .846 – .628 .634 .599 .492 .593 – .663 .668 .550 .580 .684 –
TFIDF .852 .850 .787 .818 .839 – .617 .627 .619 .511 .612 – .659 .612 .574 .581 .681 –
LogTFIDF .849 .861 .781 .816 .841 – .627 .637 .607 .532 .605 – .665 .668 .566 .599 .684 –
BM25 .844 .850 .769 .819 .847 – .622 .638 .599 .552 .610 – .652 .659 .549 .604 .685 –

STW TFGR .846 .854 .821 .815 .849 – .630 .631 .667 .516 .589 – .577 .587 .410 .596 .664 –
TFCHI .836 .839 .798 .805 .846 – .601 .607 .659 .516 .602 – .566 .588 .379 .616 .665 –
ConfWeight .823 .821 .754 .808 .834 – .603 .592 .609 .495 .593 – .668 .677 .657 .635 .682 –
TFRF .862 .864 .790 .804 .840 – .643 .637 .644 .452 .602 – .677 .662 .619 .536 .679 –
Dense .849 .851 .821 .851 .848 .851 .580 .579 .551 .591 .597 .575 .647 .648 .558 .548 .646 .651
CCA .837 .841 .623 .406 .838 – .600 .601 .605 .507 .597 – .672 .673 .615 .595 .685 –

LTW LTW-L-s .867 .865 .825 .819 .848 – .645 .636 .685 .603 .597 – .688 .678 .660 .598 .663 –
LTW-L-I .874 .869 .821 .843 .846 – .649 .643 .690 .586 .593 – .688 .680 .665 .622 .650 –
LTW-G-s .824 .818 .773 .776 .819 – .555 .546 .563 .292 .536 – .601 .595 .555 .419 .615 –
LTW-G-I .869 .867 .699 830 .844 – .650 .635 .516 .589 .590 – .693 .689 .513 .666 .663 –

13. While some previous papers (e.g., [43]) have reported substan-
tially higher scores for this dataset, it is worth noticing that we use a
harder, more realistic version of the dataset than has been used in those
papers. In our version, headers, footers, and quotes have been removed,
since these fields contain terms that have near-perfect correlation with
the classes of interest, thus making the classification task unrealistically
easy; see http://scikit-learn.org/stable/datasets/twenty_newsgroups.
htmlfor further details. Our results are indeed consistent with those of
other papers (e.g., [44]) which follow the same policy as ours.
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outperform the baselines in Fm
1 in most cases (statistical sig-

nificance is discussed in Section 5.7). The best absolute clas-
sification result for each dataset is always obtained by LTW.

The local variants exhibit the most stable improvement
across datasets and classifiers, while the global variants
seem more unstable in this regard. The local variants out-
perform all other baselines on average in REUTERS-21578 and
20NEWSGROUPS (and rank second in OHSUMED); the LTW-L-I
variant is overall the best-performing method. The LTW-G-I
vectors produce competitive results when used in combina-
tion with SVMs, LR, and KNN. Conversely, the globally
computed vectors prove less suitable for the MNB classifier;
this may be explained by the fact that globally leveraging
the dependencies between features contradicts the indepen-
dence assumption built into the MNB classifier.

It is worth noticing that the unbounded versions (I) turn
out to be more competitive than the bounded ones (s). This
seems to clash with the fact that traditional implementations
of CDðt;D; CÞ generate values that are always non-negative
and usually upper-bounded by 1. However, allowing the
score to be negative gives the optimiser the opportunity to
discern between positive and negative correlation with the
class, while most FS functions do not draw any distinction
between these two cases. Furthermore, allowing the score to
exceed the bounds [0,1] helps the optimiser to tune the rela-
tive importance of the DDðt; dÞ and the CDðt; D;CÞ factors.

Regarding the baselines, TFGR and TFCHI outperform
the UTW approaches in most cases across REUTERS-21578
and 20NEWSGROUPS, but perform comparably worse in
OHSUMED. This seems to indicate that, although traditional
FS functions succeed in reflecting feature importance, some
adaptation may be required in order to safely incorporate
this score into theweight calculation. Binary is theworst-per-
forming method (even though it works reasonably well with
the MNB classifier — which was to be expected given that
the classifier was originally designed with binary features in
mind14). This is a consequence of the fact that binary weight-
ing disregards term frequency (apart from mere presence/
absence) and term specificity in the collection. Other things
being equal, it is noteworthy that both UTW and STW per-
form irregularly across different conditions (e.g., in the STW
group ConfWeight obtained the best average performance on
OHSUMED but the worst on REUTERS-21578 and 20NEWSGROUPS),
without any clear winner in the respective groups.

The dense representations generated by FASTTEXT per-
form comparably to the best-performing competitor in
combination with KNN and RF classifiers in most cases.
As a classifier, FASTTEXT (FT) performed irregularly across
datasets, outperforming several baselines on OHSUMED,
both in terms of FM

1 and Fm
1 , but being surpassed by

many UTW and STW methods in combination with SVM
and LR on the other datasets. Those results seem to
confirm that the superiority of deep learning models over
traditional learners is only reached when learning from
much larger text collections.

In our experiments CCA never stands out from the point
of view of accuracy, obtaining scores which are almost
always in-between the worst result and the best result
obtained by the other methods. Despite the fact that CCA is
somehow similar in spirit to LTW, in the sense that both

frameworks aim at optimizing the term weighting function
(following radically different strategies, though), the weight-
ing functions produced by CCA are often too complex to
interpret. In our experiments, the depth of the formulae
(when viewed as trees of operators and operands) represent-
ing the weighting functions that CCA finds, range from a
minimum of 1 to a maximum of 13; the mode of the distribu-
tion is 5, which already indicates fairly complex formulae.

Fig. 4 shows examples of the learned local CDðt;D; CÞ
functions in their LTW-L-s and LTW-L-I variants, respec-
tively, for a sample class in each dataset. We also include
the actual coordinates (TPR;FPR) for each of the features.
(Similar plots cannot be displayed for the global variants
since global CDðt;D;CÞ functions depend on a larger num-
ber of coordinates.) Note that all learned functions agree
that the most important terms are those characterized by a
high TPR and a very low FPR. However, different cases
give rise to different shapes.15 The LTW-L-I versions tends
to generate values that are sometimes higher than 1, and
even smaller than 0 under certain conditions, e.g., when
FPR moves away from low values (see Fig. 4, left-most in
second row) or when TPR has very low values (see Fig. 4,
right-most in second row). Note also that the plots from
20NEWSGROUPS bear some resemblance to information gain
(see Fig. 1, top), while the plots from OHSUMED behave some-
how similarly to the ones relative to relevance frequency
(Fig. 2, right). Besides the fact that there exists some funda-
mental differences between the two (e.g., the one resem-
bling information gain is almost symmetric with respect to
the polarity of the correlation, while the other is not), it is
interesting to see how LTW “decides” automatically the
best shape to develop for each of the binary problems at
hand. That this function is potentially different for each
problem was not necessarily to be taken for granted, i.e., the
optimised function might have exhibited a similar pattern
across problems. These examples support our intuition that
the optimal CDðt;D;CÞ function may neither be unique, nor
universal (thus, not liable to be captured by a fixed formula,
as done in standard weighting approaches, supervised and
unsupervised alike), but can instead be learned for each spe-
cific classification problem.

5.7 Statistical Significance
In Table 3 we report the results of our statistical significance
tests. The differences between the local variants of LTW and
the UTW baselines are statistically significant in all cases. In
terms of FM

1 and regarding the STW approaches, LTW-L-s
is significantly superior only to TFRF, while LTW-L-I signif-
icantly outperforms all STW baselines but TFGR and Dense.
In terms of Fm

1 , both LTW-L-s and LTW-L-I are always
superior to the STW baselines. There are no significant dif-
ferences in performance between the local variants accord-
ing to the test. Finally, the global variants do not prove
superior, in a statistically significance sense, to any of the
baselines. Concerning the global variants, LTW-G-I always
proves superior to LTW-G-s.

Since the optimization procedure has a random com-
ponent we analyze the variation in performance across

14. The particular implementation we use here is able to take advan-
tage of real-valued vectors, though. See [38] for further details.

15. We verified that the shapes are consistent through different runs,
with negligible variations among them. In additional experiments, we
forced the CDðt;D;CÞ function to mimic information gain in a pre-
training phase. This had essentially no impact on the final shape.
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the 10 runs in terms of standard deviation (SD); no differ-
ence worth noticing results from different random seed
initializations. Specifically, the SD of FM

1 across runs
varies between 0.0018 (in 20NEWSGROUPS using LR and
LTW-L-I) and 0.0178 (in REUTERS-21578 using MNB and
LTW-L-s), with an expected value of 0.0082. Similarly,
the SD of Fm

1 varies between 0.0017 (in 20NEWSGROUPS

using SVM and LTW-L-I) and 0.0179 (in OHSUMED using
MNB and LTW-G-I), with an expected value of 0.0072.
All in all, we find the local variants to be slightly more
stable (in terms of SD) than the global ones across learn-
ers and datasets (0.0076 versus 0.0088 in FM

1 , and 0.0043
versus 0.0099 in Fm

1 , respectively), while there are no
noticeable differences between bounded and unbounded
versions in this respect.

5.8 A Note on Convergence and Efficiency
As a learning procedure, LTW is exposed to the typical
problems that arise in the realm of optimization methods.
Notwithstanding this, we observe that the different models
converge smoothly to good solutions in the parameter space
(as demonstrated in classification performance), with low
tendency to overfit. Fig. 5 shows the convergence trends for
LTW-L-I for the same sample classes used in Fig. 4 (we
observe that all the LTW variants we propose and all the
classes from our three datasets exhibit a qualitatively simi-
lar behaviour in terms of convergence). Note that, in all
cases, an early termination is activated before the maximum
number of iterations is reached. That is, irrespectively of the
ongoing reduction in training loss, the process terminates
when no further improvement is recorded in a validation

Fig. 4. Plots of the LTW-L-s variant (first row) and LTW-L-I variant (second row) on (from left to right) REUTERS-21578 (earn), 20NEWSGROUPS

(misc.forsale), and OHSUMED (Respiratory Tract Diseases).

TABLE 3
Wilcoxon Signed-Rank Tests of Statistical Significance of the Difference in Performance Between LTW Variants (Rows)

and All Tested Methods (Columns), at Confidence Levels a ¼ 0:05 (y) and a ¼ 0:005 (yy)

UTW STW LTW

Binary TF LogTF TFIDF LogTFIDF BM25 TFGR TFCHI ConfWeight TFRF Dense CCA LW-L-s LW-L-I LW-G-s LW-G-I

FM
1 LW-L-s yy yy y y y y y y yy - yy

LW-L-I yy yy yy y y y y y y y y yy - yy
LW-G-s -

LW-G-I yy -

Fm
1 LW-L-s yy yy yy y y y yy yy y y y yy - yy

LW-L-I yy yy y y y y yy yy y y y yy - yy
LW-G-s -

LW-G-I y -
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set. Apart from preventing overfitting, this mechanism
speeds up the optimization time noticeably.

Although execution times depend largely on the imple-
mentation and the hardware, it is fair to note that LTW

approaches are slower than UTW methods and most STW
methods (with the exception of CCA). For example, on the
samemachine16 and on average, it tales less than a second for
any UTW to compute termweights for the REUTERS-21578 col-
lection, while STW requires 23 seconds and LTW requires 62
seconds. Despite the increase in execution time, it is also
fair to note that this penalty is affordable, since the time
bottleneck still lies on the tasks of training the classifier
and optimizing the hyperparameters in the validation
phase, which are run once for all. Additionally, given the
continuous improvements and massive parallelization of
new GPUs, it would not be surprising to see this differ-
ence in performance to considerably soften in the near
future.17 CCA is by far the slowest method among those
considered in our experiments: although the execution
time in any genetic algorithm depends on many variables
(number of iterations, population size, etc.), on average it
takes no less than 1,005 seconds for our (highly parallel-
ized) implementation of CCA to evolve the weighting
function for each class of REUTERS-21578, 3,235 seconds for
20NEWSGROUPS, and 3,075 seconds for OHSUMED.

6 WOULD LEARNING THE DDðt; dÞ FACTOR ALSO

HELP?

So far we have framed the LTW framework as one that
learns the IDF-like component (the CDðt;D;CÞ factor) alone,
relying on a predefined and fixed DDðt; dÞ function for han-
dling the term frequency component. Despite the fact that
the above is consistent with previous STW literature, it
might seem legitimate to also try to learn the DDðt; dÞ com-
ponent. In fact, one might argue for explicitly optimizing
also the DDðt; dÞ factor (instead of using e.g., a predefined
log-scaled function) by saying that the impact of term
frequency on the importance of a feature might in principle
be captured by functions different from the ones routinely
used for this, e.g., by functions that are not necessarily
monotonic. In this section we report on experiments we
have conducted in order to ascertain whether explicitly
optimizing also the DDðt; dÞ factor might be beneficial.

To this aim, we have investigated a variant of the Local
LTW architecture (see Fig. 3a) in which the left branch is
replaced by a component modelled by equations

ĥt ¼ ReLUð½ftd� �W4 þ b4Þ
ddðt; dÞ ¼ ReLUðĥt �W5 þ b5Þ

(20)

whereWi and bi (for i 2 f4; 5gÞ are the new parameters to be
learned alongside the previously defined set of parameters
Wi and bi (for i 2 f1; 2; 3gÞ. In order to preserve sparsity,
we force ddðt; dÞ to be 0 if feature t does not occur in
document d.

For this experiment we consider 100 hidden units in layer
ĥ, which yield ð1� 100þ 100Þ þ ð100� 1þ 1Þ ¼ 301 addi-
tional parameters, and apply a 0.2 dropout to neurons in

Fig. 5. Convergence trends of LTW-L-I variants. From top to bottom:
REUTERS-21578 (earn), 20NEWSGROUPS (misc.forsale), and OHSUMED

(Respiratory Tract Diseases). 16. All timings were recorded on the same machine, equipped with
a 12-core processor Intel Core i7-4930K at 3.40 GHz with 32 GB of RAM
and an Nvidia GeForce GTX 1080, under Ubuntu 16.04 (LTS)

17. FASTTEXT is peculiar in this respect, since the document represen-
tation phase and the classifier training phase are undertaken simulta-
neously. On average, it tales 10 seconds to process REUTERS-21578,
31 seconds to process OHSUMED (we use 100 epochs for both), and
79 seconds to process 20NEWSGROUPS (500 epochs).

MOREO ET AL.: LEARNING TOWEIGHT FOR TEXT CLASSIFICATION 313



the hidden layer. We leave the rest of the parameters
untouched.

Table 4 shows the results we have obtained for this vari-
ant (here denoted LTW-TF). For the sake of clarity, we only
report the results for the SVM learner (all other learners dis-
played similar patterns), together with the percentage of rel-
ative improvement with respect to the LTW counterpart (we
here choose the LTW-L-I variant) that does not optimize the
DDðt; dÞ component.

The results show that explicitly learning the DDðt; dÞ com-
ponent does not bring about any advantage. Actually, doing
it degrades performance (and, according to the Wilcoxon
signed-rank test, this difference is statistically significant at
confidence level a ¼ 0:005). This might come as a surprise,
given that LTW-TF has more parameters than LTW-L-I,
which means it could well have learned the log-scaled ver-
sion that LTW-L-I uses if this is indeed the best choice.

So, why is LTW-TF not superior? In principle, one might
think that the proposed model is inadequate, which would
imply that LTW-TF is not able to learn any meaningful
DDðt; dÞ function. However, that this is not the case can be
seen by inspecting the actual functions that the model
learns, that do seem meaningful. As an example, Fig. 6 plots
the functions learned for the same example classes used for
Figs. 4 and 5, and compares them with typical functions
used to instantiate the DDðt; dÞ factor (all functions are nor-
malized so as to facilitate their comparison). Indeed, the
functions that the model learns seem meaningful. For exam-
ple, for the REUTERS-21,578 example class (see Fig. 6(left))
the learned function is increasing between low (ftd ¼ 0) to
middle frequencies (ftd ¼ 7), then decreases until ftd > 20
and is 0 thereafter; this pattern is aligned with Luhn’s intui-
tion that the most important words are characterized by
intermediate frequencies while words that are too rare or
too frequent should instead be attributed low importance.
In the case of 20NEWSGROUPS (see Fig. 6(middle)) the learned
function displays a monotonic and quasi-linear behaviour
from approximately 0.5 onwards; this resembles another
well-known instantiation of the DDðt; dÞ factor, i.e., the

0:5þ 0:5þftd
maxðftdÞ function already documented in past IR litera-

ture (see, e.g., [1], [16]). Also in OHSUMED (see Fig. 6(right))
the model seems to have found meaningful patterns,
somehow resembling the logarithmic variants of the
DDðt; dÞ factor. We have observed similar (and analogously
meaningful) patterns for the other classes too. In sum, it is
clear that the degradation in performance observed in
Table 4 cannot be explained by the supposed inability
of the DDðt; dÞ branch of the LTW-TF architecture to learn
meaningful functions. Rather, our conjecture is that the
increase in the number of parameters complicates the opti-
mization procedure more than it improves the model
flexibility, and that the net effect is a model more difficult
to optimize.

7 CONCLUSIONS

While standard (unsupervised) term weighting approaches
do not leverage the distribution of the term across the classes,
supervised ones are able to exploit this information. How-
ever, the improvements that these supervised methods have
shown with respect to their unsupervised variants have not
been, so far, systematic. After discussing the possible causes
of this, we have discussed our conjecture that a pre-defined
“Holy Grail” formula for supervised term weighting, after
all, may not exist. Based on this intuition we have proposed
“Learning toWeight”, a framework for learning a supervised
term weighting function tuned on the available training set.
We have shown several instantiations of this framework to
consistently outperform previously propised (unsupervised
or supervised) term weighting approaches, on several stan-
dard datasets and using different learning algorithms for
training classifiers. The analysis of the weighting functions
that our algorithm has learned supports our hypothesis that
the optimal geometrical shape of the function is dependent
on the underlying data distribution.

From the point of view of the optimization processes (in
particular: the architecture of the neural networks) our
approach presents some novelty as well, since the CDðt;D;CÞ
part of the supervised termweighting functionmay be thought
of as a regulariser operating on feature statistics. That is, the
architecture we propose can be interpreted as a traditional
feedforward network (the DDðt; dÞ part and logistic regressor)
which is regularised (through the CDðt;D;CÞ part) with con-
stant feature statistics (extracted from thematrix columns) that
control the information flow of the examples (i.e., the matrix
rows). In the future it may be worthwhile to experiment with
such kind of regulariser outside the scope of text classification.

Fig. 6. Learned TF-like functions for LTW-TF on (from left to right) REUTERS-21578 (earn), 20NEWSGROUPS (misc.forsale), and OHSUMED (Respiratory
Track Diseases).

TABLE 4
LTW-TF Performance and Relative Improvement

with Respect to LTW-L-I

FM
1 Fm

1

REUTERS-21578 0.586 (-6.84%) 0.865 (-1.04%)
20NEWSGROUPS 0.623 (-1.01%) 0.645 (-0.70%)
OHSUMED 0.639 (-1.52%) 0.685 (-0.41%)
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Directions for future work include investigating the
inclusion of more elaborated statistics about the correla-
tion between features and classes (such as, e.g., Kullback-
Leibler divergence, Fisher Information, or other feature
scoring functions). We also plan to test “Learning to
Weight” in multiclass classification settings, i.e., by consid-
ering all classes jointly via global policies. It would also be
interesting to extend the framework so as to jointly learn
not only the DDðt; dÞ function but also its normalisation
component. Finally, we believe that “Learning to Weight”
might in principle also be useful in other tasks related to
text classification, such as in learning to rank or feature
selection.
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[32] H. M. de Almeida, M. A. Gonçalves, M. Cristo, and P. Calado, “A
combined component approach for finding collection-adapted
ranking functions based on genetic programming,” in Proc. 30th
ACM Int. Conf. Res. Develop. Inf. Retrieval, 2007, pp. 399–406.

[33] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit.
Lett., vol. 27, pp. 861–874, 2006.

[34] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[35] W. Hersh, C. Buckley, T. Leone, and D. Hickman, “OHSUMED:
An interactive retrieval evaluation and new large text collection
for research,” in Proc. 17th ACM Int. Conf. Res. Develop. Inf.
Retrieval, 1994, pp. 192–201.

[36] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” in Proc. 10th Eur. Conf.
Mach. Learn., 1998, pp. 137–142.

[37] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach.
Learn. Res., vol. 9, pp. 1871–1874, 2008.

[38] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the
poor assumptions of Naive Bayes text classifiers,” in Proc. 20th Int.
Conf. Mach. Learn., 2003, pp. 616–623.

[39] T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, 2013, pp. 746–751.

[40] M. Abadi and other 39 authors, “TensorFlow: Large-scale machine
learning on heterogeneous distributed systems,” 2016,
arXiv:1603.04467.

[41] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv:1412.6980, 2014.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
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