
�

�

�

�

�

�

�

�

19

Improving Text Classification Accuracy by Training Label Cleaning

ANDREA ESULI and FABRIZIO SEBASTIANI, Consiglio Nazionale delle Ricerche, Italy

In text classification (TC) and other tasks involving supervised learning, labelled data may be scarce or ex-
pensive to obtain. Semisupervised learning and active learning are two strategies whose aim is maximizing
the effectiveness of the resulting classifiers for a given amount of training effort. Both strategies have been
actively investigated for TC in recent years. Much less research has been devoted to a third such strategy,
training label cleaning (TLC), which consists in devising ranking functions that sort the original training
examples in terms of how likely it is that the human annotator has mislabelled them. This provides a con-
venient means for the human annotator to revise the training set so as to improve its quality. Working in
the context of boosting-based learning methods for multilabel classification we present three different tech-
niques for performing TLC and, on three widely used TC benchmarks, evaluate them by their capability of
spotting training documents that, for experimental reasons only, we have purposefully mislabelled. We also
evaluate the degradation in classification effectiveness that these mislabelled texts bring about, and to what
extent training label cleaning can prevent this degradation.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]: Design Methodology—Classifier design
and evaluation; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Informa-
tion filtering; Search process; I.2.7 [Artificial Intelligence]: Natural Language Processing—Text analysis

General Terms: Algorithms, Design, Experimentation, Measurement

Additional Key Words and Phrases: Text classification, supervised learning, training label cleaning, syn-
thetic noise, training label noise

ACM Reference Format:
Esuli, A. and Sebastiani, F. 2013. Improving text classification accuracy by training label cleaning. ACM
Trans. Inf. Syst. 31, 4, Article 19 (November 2013), 28 pages.
DOI:http://dx.doi.org/10.1145/2516889

1. INTRODUCTION

In many application contexts involving supervised learning, labelled data may be
scarce or expensive to obtain. In such situations, once we have trained the classifier
with the available training data, if we discover that its accuracy is insufficient we
are left with the issue of how to further improve it, under the constraint that the
amount of human effort available to perform additional labelling is limited. One
solution is to apply active learning techniques (see, e.g., [Cohn et al. 1994; Yu et al.
2008]), which rank a set of unlabelled examples in terms of how useful they are
expected to be, once manually labelled, for retraining a (hopefully) better classifier;
this allows the human annotators to concentrate on the most promising examples

This article is a substantially revised and extended version of a paper presented at the 2nd International
Conference on the Theory of Information Retrieval (ICTIR’09).
The order in which the authors are listed is alphabetical; each author has given an equally important
contribution to this work.
Authors’ address: A. Esuli and F. Sebastiani, Istituto di Scienza e Tecnologie dell’Informazione, Con-
siglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; email: {andrea.esuli,
fabrizio.sebastiani}@isti.cnr.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1046-8188/2013/11-ART19 $15.00
DOI:http://dx.doi.org/10.1145/2516889

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:2 A. Esuli and F. Sebastiani

only. A second solution, orthogonal to the previous one, is to apply semisupervised
learning techniques (see, e.g., [Chapelle et al. 2006; Sindhwani and Keerthi 2006; Zhu
and Goldberg 2009]), which instead attempt to improve the accuracy of the classifier
by leveraging unlabelled data (so that no additional labelling is needed). This solution
relies on the fact that unlabelled data is often available in large quantities, sometimes
even from the same source where the training and test data originate.

Both semisupervised learning and active learning have been widely studied in the
context of text classification (TC) and other IR tasks involving supervised learning.
There is instead a third route to solving the given problem that has been studied
much less, namely, (computer-assisted) training label cleaning (TLC). Similarly to ac-
tive learning, TLC techniques attempt to minimize the additional effort required from
human annotators. However, while in active learning the human annotator is asked to
label new unlabelled examples, in TLC she is required to inspect the manually labelled
examples, looking for possibly mislabelled ones.

In the same way as a good active learning technique top-ranks the unlabelled ex-
amples that, once labelled, would prove the most informative for the training process,
a good TLC technique top-ranks the training examples with the highest likelihood
of being mislabelled. This allows the human annotator to improve the quality of the
training set by inspecting the labels attached to the training examples, starting with
the ones most likely to be erroneous, and working down the ranked list as s/he sees fit.

In this article we present three different techniques for performing TLC in TC and
test them using a boosting-based supervised learner that generates confidence-rated
predictions. The reason we are using this device is that, as will be apparent in Sections
3 and 4, it has two features that allow us to exemplify our TLC techniques particularly
well, that is, (i) it allows for a notion of confidence in the classifier’s predictions; and
(ii) the classifier it generates is actually a classifier committee. We run our tests on
three widely used TC benchmarks (two of which are very large), on which we evaluate
our TLC techniques by their capability of spotting texts that we have purposefully
mislabelled, for experimental purposes only, in the training set. We also evaluate the
degradation in classification effectiveness that these mislabelled texts bring about, and
to what extent training label cleaning can prevent this degradation.

The rest of the article is organized as follows. In Section 2 we explore more deeply
the motivation behind training label cleaning as arising from practical application
scenarios. Section 3 gives a brief description of the supervised learner that we use in
our experiments, focusing on the features that are important for understanding the
three TLC techniques we study; these latter are presented in Section 4. In Section
5 we describe the results of our tests in which, using three popular TC benchmarks,
we evaluate these techniques by their capability of spotting texts that we have
purposefully mislabelled, for experimental purposes only, in the training set. In the
same section we also evaluate the beneficial effects that performing TLC may have on
classification accuracy, by measuring the deterioration in classification accuracy that
the insertion of these mislabelled training examples brings about. Section 6 discusses
additional experiments aimed at verifying if and how much the results presented in
the previous section are learner-independent (Section 6.1), and at verifying whether
mutual independence of a committee of classifiers may help one of the three techniques
presented (Section 6.2). Section 7 describes related research efforts, comparing them
with the research described in this article. Section 8 concludes, pointing at avenues
for further research.

2. MOTIVATION

Training label cleaning has to do with the presence of mislabelled items in the train-
ing data (see Figure 1 for two concrete examples). Of course, defining what counts as a

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:3

Text Customer Network Tariff
Service Service or Value

I keep having constant harassment ie six
calls a day to change package or upgrade
this has been going on for over three
months even tho i keep telling your
staff i’m ok and to STOP calling me!

Yes No Yes (*)

Iv had nothing but trouble with your
network. I was totally mislead in the
shop. Iv had double amount of money
taken out of my account your mistake!
Cant wait till my contract runs out i
wouldnt recommend you 2 anyone!

No (*) No (*) Yes

Fig. 1. Two (manually) mislabelled training documents. The 1st column lists the textual content of the
documents, while the other columns indicate some among the classes that the human annotators were meant
to assign. The context was a customer satisfaction survey by a telecommunications company to whom these
authors provide text classification services; the goal of the classification is to spot reasons for dissatisfaction
with the company. Labels marked with a “(*)” seem clear mislabellings on the part of the (junior) annotators
who performed the annotation.

mislabelled example is itself tricky, because labelling a document is a subjective activ-
ity. Different annotators a1 and a2 might in good faith disagree as to whether class cj
should be attributed or not to document di, a phenomenon called intercoder disagree-
ment. This problem is exacerbated when the meaning of the class is not clearcut: for
instance, it is not always clear if a given product review should be classified as Positive
or Negative, or whether a given news article fits or not into class Lifestyles.

For the purpose of this article we will simply assume that when annotator a2 at
an organization inspects a set of labelled documents owned by the organization with
the purpose of determining the quality of the labelling, and detects a label (originally
attributed by annotator a1) she disagrees with, this counts as a mislabelled document.
In other words, we are assuming that the judgment of the annotator who performs the
quality check is more important that that of the annotator who had originally labelled
the documents. There are several reasons for this assumption.

(1) In several organizations it is often the case that the original labelling is performed
by annotators (usually called “coders”) as a part of their daily routine. In this rou-
tine, throughput (i.e., number of annotated documents per unit of time) is an es-
sential factor. As a result, the coders’ labelling activity may be error-prone.
Coders usually report to a more senior, superordinate “information specialist” who,
in case labelled data are to be used for training an automated classifier (thereby
generating a durable asset for the organization), may decide to double-check the
labels originally attached by her coders. In this double-checking activity the re-
sulting label quality is essential, while throughput is much less so. As a result, the
judgments of the information specialist override those of the coders, and may be
taken to be “the correct ones”.

(2) It is hardly the case that the coders are the originators of the classification scheme;
as a result, they may have an imperfect understanding of the true meaning of the
classes, which may further negatively affect the quality of the labels they attribute.
On the contrary the information specialist, being more senior, may either be the
originator of the classification scheme or may be its maintainer (i.e., the one that
decides when and if it needs revision in order to better suit the changing needs

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:4 A. Esuli and F. Sebastiani

of the organization), which means that her understanding of the meaning of the
classes is certainly higher than that of the coders. This is a further reason why
the labels she decides to attribute are more reliable than those attributed by the
coders.

(3) When coders perform the original labelling they tend to work in “routine mode”,
sometimes with less-than-total commitment; an example is the (increasingly fre-
quent) case in which annotation is performed via crowdsourcing (e.g., Mechanical
Turk), yet another context in which fast turnaround (rather than label quality) is
the main goal of the annotators [Grady and Lease 2010; Snow et al. 2008]. When
an information specialist sets out to revise the labels attributed by her coders, she
is instead likely to work in “double-checking mode”, which is obviously conducive
to better labelling decisions.

(4) If the user interface coders work with displays up-front the titles of a list of doc-
uments to be labelled, and only shows the body of a document if the annotator
double-clicks on them, some coders will be happy to work from the titles alone,
and this might be sufficient to correctly label most documents. However, for some
documents the resulting labelling will be incorrect because the coders have not
inspected the actual body of the document. This is another potential source of er-
ror, and one the information specialist will not be prone to if, working in double-
checking mode, she does indeed inspect the body of the document.

(5) If the actual task is multilabel classification (see Section 3 for details), coders
might attribute one or two labels to a document and stop exploring the classifi-
cation scheme for other potential classes that might apply, thus generating several
false negatives. It is the experience of these authors that, when classifying texts
for market research applications (see Esuli and Sebastiani [2010]), coders make a
conscious effort to avoid false positives but a much smaller one to avoid false neg-
atives. An information specialist double-checking the labelled documents would
likely not incur in the same mistake.

For all these reasons we may confidently assume that, when a set of labelled data
is double-checked with the purpose of correcting possible mislabellings and using it
to train a classifier, the labels decided upon by the annotator who performs the re-
vision are the “correct” ones. This assumption justifies the experimental protocol we
will adopt in Section 5, and ultimately justifies the very endeavour of training label
cleaning.

3. PRELIMINARIES

This work attempts to identify good TLC techniques for text classification (aka text
categorization – TC), and for multilabel text classification (MLTC) in particular.
Given a set of textual documents D and a predefined set of classes (aka categories)
C = {c1, . . . , cm}, MLTC can be defined as the task of estimating an unknown target
function � : D × C → {−1, +1}, that describes how documents ought to be classified,
by means of a function �̂ : D × C → {−1, +1} called the classifier1; here, +1 and −1
represent membership and non-membership of the document in the class. Each docu-
ment may thus belong to zero, one, or several classes at the same time. As usual, we
accomplish MLTC by generating m independent binary classifiers �̂ j : D → {−1, +1},
one for each cj ∈ C, entrusted with the task of deciding whether a document belongs
to class cj or not. Note that we here do not address the related problem of TLC for
single-label, multiclass classification, where each document needs to be assigned one

1Consistently with most mathematical literature we use the caret symbol (ˆ) to indicate estimation.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:5

and only one out of m > 2 candidate classes; we leave the investigation of this task to
future work.

As the learner for generating our classifiers we use our in-house boosting-based
learner, called MP-BOOST [Esuli et al. 2006]; classifiers obtained via boosting have
consistently shown high accuracy in several learning tasks, while at the same time
having strong justifications from computational learning theory [Schapire and Freund
2012]. MP-BOOST is a variant of ADABOOST.MH [Schapire and Singer 2000] explic-
itly optimized for multilabel settings, which has been shown in [Esuli et al. 2006] to
obtain considerable effectiveness improvements with respect to ADABOOST.MH.

MP-BOOST works by iteratively generating, for each class cj, a sequence �̂
j
1, . . . , �̂

j
S

of classifiers (called weak hypotheses). A weak hypothesis is a function �̂
j
s : D → R,

where D is the set of documents and R is the set of the reals. The sign of �̂
j
s(di) (denoted

by sgn(�̂
j
s(di))) represents the binary prediction of �̂

j
s on whether di belongs to cj, that

is, sgn(�̂
j
s(di)) = +1 (resp., −1) means that di is predicted to belong (resp., not to

belong) to cj. The absolute value of �̂
j
s(di) (denoted by |�̂ j

s(di)|) represents instead
the confidence that �̂

j
s has in this prediction, with higher values indicating higher

confidence.
At each iteration s MP-BOOST tests the effectiveness of the most recently generated

weak hypothesis �̂
j
s on the training set and uses the results to update a distribution

D j
s of weights on the training examples. The initial distribution D j

1 is uniform. At each

iteration s all the weights D j
s(di) are updated, yielding D j

s+1(di), so that the weight

assigned to an example correctly (resp., incorrectly) classified by �̂
j
s is decreased (resp.,

increased). The weight D j
s+1(di) is thus a measure of how ineffective �̂

j
1, . . . , �̂ j

s have
been in predicting whether di belongs to cj or not (denoted by � j(di)). By using this
distribution, MP-BOOST generates a new weak hypothesis �̂

j
s+1 that concentrates on

the examples with the highest weights, that is, those that had proven harder to classify
for the previous weak hypotheses.

The overall prediction on whether di belongs to cj is obtained as a sum �̂ j(di) =∑S
s=1 �̂

j
s(di) of the predictions of the weak hypotheses. The final classifier �̂ j is thus

a committee of S classifiers, each classifier casting a weighted vote, with the vote be-
ing the binary prediction sgn(�̂

j
s(di)) and the weight being the confidence |�̂ j

s(di)| of
this prediction. For the final classifier �̂ j too, sgn(�̂ j(di)) represents the binary pre-
diction as to whether di belongs to cj, while |�̂ j(di)| represents the confidence in this
prediction.

See Esuli et al. [2006] for more details on these and other aspects of MP-BOOST.

4. THREE TECHNIQUES FOR TRAINING LABEL CLEANING

In the following, by a TLC technique ρ we will mean a technique that, given a training
set Tr and a class cj, produces a ranking rρ

j (Tr) in which the elements of Tr are sorted
in decreasing order of the likelihood that their manually assigned label for cj is wrong.
Different techniques correspond to different ways of estimating this likelihood.

Note that, given a set of classes C = {c1, . . . , cm}, these techniques thus generate m
different and independent rankings of Tr; no unified and/or merged ranking is gener-
ated. This evokes an application scenario in which the user cleans the training data
on a class-per-class basis, working on the classes for which the effectiveness is still
low and disregarding the ones for which the effectiveness is already high enough, or

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:6 A. Esuli and F. Sebastiani

inspecting the different class-specific lists down to different depths depending on how
much a given class needs improvement.

We now present three alternative TLC techniques.

4.1. The Confidence-Based Technique

For each cj ∈ C, the first technique (that we dub the confidence-based technique –
CONF, in short) consists in

(1) training a classifier �̂ j on Tr;
(2) reclassifying the di ∈ Tr by means of �̂ j;
(3) ranking the di ∈ Tr in increasing order of their �̂ j(di) · � j(di) value.

The product �̂ j(di) · �j(di) is the margin of an example as computed by the final
classifier. Note that, while � j(di) is a value in {−1,+1}, �̂ j(di) is a value in (−∞, +∞),
so �̂ j(di) ·� j(di) is also in (−∞, +∞); a positive (resp., negative) value of �̂ j(di) ·� j(di)
indicates a correct (resp., incorrect) binary prediction, while a high (resp., low) absolute
value of The CONF technique thus corresponds to (a) top-ranking the examples di ∈ Tr
that �̂ j has misclassified, in decreasing order of the confidence |�̂ j(di)| with which �̂ j

has made its prediction, and (b) appending to this list the examples di ∈ Tr that �̂ j has
correctly classified, in increasing order of the confidence |�̂ j(di)|. Obviously, different
rankings are produced for the different cj ∈ C. The rationale of this technique is that,
if �̂ j has misclassified a training example di with high confidence, this means that the
label for cj given to di by the human annotator is highly at odds with the labels for cj
that the human annotator has given to the other training examples, which indicates
that the human annotator may well have mislabelled di for cj.

4.2. The Nearest Neighbours Technique

For each cj ∈ C, the second technique (that we dub the nearest neighbours technique –
NN) consists in ranking the training examples in terms of how inconsistent their label
for cj is with the labels for cj of their k nearest neighbours, for a predefined k. More
formally, this technique consists in

(1) computing, for each di ∈ Tr, the value

ζ(di, cj) =
∑

dz∈Trk(di)

sim(di, dz) · � j(dz), (1)

where sim(·, ·) denotes a measure of similarity between documents and Trk(di)
denotes the k training examples most similar to di;

(2) ranking the di ∈ Tr in increasing order of their ζ(di, cj) · � j(di) value.

For class cj, the examples di with labels highly consistent with the labels of their neigh-
bours will have high ζ(di, c j) ·� j(di) values, which means that the ones with the lowest
ζ(di, c j) · � j(di) values will be the ones with labels most dissimilar from those of their
closest neighbours. Equation (1), of course, is that of the standard distance-weighted
k-NN learner (see e.g., [Yang 1994, 1999]), the only difference being that, while in the
standard case � j(dz) ranges on {0,1}, in our case it ranges on {−1,+1}, which means
that neighbours with a negative label for cj weigh negatively, instead of having no ef-
fect, on ζ(di, cj). This variant of the k-NN learner is discussed in Galavotti et al. [2000].

The NN technique is similar to the CONF technique, and it might be seen as an
instantiation of CONF where the Galavotti et al. [2000] variant of the k-NN classifier is
used as the learning method. One difference between NN and CONF is that in NN the

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:7

sign of ζ(di, cj) is, unlike �̂ j(di) in CONF, not meant to represent the binary prediction
of the classifier, since the decision threshold is not necessarily zero. A second, more
significant difference is that in CONF the document di whose manually attributed
label is being evaluated has also played the role of the training example in generating
�̂ j, which is being used for the evaluation. This does not happen in the NN technique,
since di is not a member of Trk(di).

4.3. The Committee-Based Technique

For each cj ∈ C, the third technique (that we dub the committee-based technique –
COMM) consists in

(1) training a classifier �̂ j on Tr;
(2) reclassifying Tr by means of �̂ j;
(3) ranking the di ∈ Tr in increasing order of their

�(�̂ j(di)) · sgn(�̂ j(di)) · � j(di)

value, where �(�̂ j(di)) is a nonnegative real number that measures the agreement
among the S members of �̂ j on whether di belongs to cj or not.

This technique is based on the intuition that the examples most in need of inspection
are the ones which �̂ j has misclassified (i.e., those such that sgn(�̂ j(di)) ·� j(di) = −1)
with the most widespread agreement among its S members. In other words, if the infor-
mation that a training example provides to the training process is so inconsistent with
that provided by the other training data as to have the members of the generated clas-
sifier committee misclassify the example with widespread agreement, then it is likely
that the example might be mislabelled. This technique will thus top-rank the training
examples that the committee has misclassified and on which the S members of the
committee agree most, mid-rank those on which there is disagreement, and bottom-
rank those that the committee has classified correctly and on which the S members of
the committee agree most.

The key difference between the first technique (CONF) and this technique is that
here the confidence that a classifier committee has in a certain prediction is taken to
coincide with the level of (weighted) agreement among its members, and not with the
(weighted) sum of the individual opinions. As a measure of agreement among the S
members of the committee we have chosen to use 1

σ
, where σ denotes standard devi-

ation. This is a natural choice, given that the values �̂
j
1(di), . . . , �̂ j

S(di) are real num-
bers: standard deviation thus enables the measurement of (dis)agreement by taking
into account not only the polarity sgn(�̂

j
s(di)) of each member’s prediction, but also

its confidence level |�̂ j
s(di)|, so that two members with views of different polarity are

taken to disagree more if they are highly confident in their views, and less if they
are not.2

4.4. The Distribution-Based Technique

Actually, there is a fourth technique (which we dub the distribution-based technique –
DIS) that might come to mind [Abney et al. 1999, Section 5]. For each cj ∈ C, this
technique consists in (i) training the classifiers �̂ j on Tr, and (ii) ranking the di ∈ Tr
in decreasing order of the D j

S(di) value that MP-BOOST has produced as a side effect of

2A previous version of this article [Esuli and Sebastiani 2009] contained a wrong, and ultimately unintuitive,
version of this technique; the present article thus describes both a revised version of the technique and
experiments run anew.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:8 A. Esuli and F. Sebastiani

the learning process. The rationale of this technique is that, since the value D j
S(di) is a

measure of how hard it has been, for the weak learners generated by the boosting
iterations, to correctly reclassify di under cj, the training examples that maximize
D j

S(di) are the ones that have turned out the most difficult to make sense of during
the boosting iterations. As a result, they are the ones whose label for cj is most highly
at odds with the label for cj of the other training examples.3

The problem with the DIS technique is that it turns out to be equivalent to our
first technique (CONF), in the sense that CONF and DIS always generate identical
rankings, a fact that had never been noted in the literature.4

The only advantage that DIS provides over CONF is thus that there is no need
to reclassify the training examples by means of �̂ j, since the information needed for
ranking is already available after training has occurred.

4.5. A Note about Generality

Before discussing the experiments it is worthwhile noting that, although we have de-
scribed these techniques in the context provided by a boosting-based learner which
generates confidence-rated predictions, all of these techniques can be used also in con-
nection with other learners. More specifically, CONF only needs the classifier to re-
turn a score of confidence in its own prediction, NN has no specific requirements, and
COMM only require the classifier to consist of a committee of classifiers. Moreover,
the discussed equivalence between CONF and DIS has the practical consequence of
making available a technique equivalent to DIS to learners not based on boosting.

5. EXPERIMENTS

5.1. Experimental Protocol

In order to test our TLC techniques we use a standard MLTC dataset � = 〈Tr, Te〉
split into a training set Tr and a test set Te. We assume that Tr and Te contain no
mislabelled examples, and simulate the presence of mislabelled training examples by
artificially “corrupting” a small number t of training examples; we call � = t

|Tr| the
corruption ratio. In what follows, “corrupting a training example di for class cj” means
changing its label for cj from positive to negative (in this case we call di a fake negative
for cj) or from negative to positive (a fake positive); by T̂r we denote the training set
after corruption, and by FNj and FPj the sets of fake negatives for cj and fake positives
for cj, respectively. We use the term “fake” instead of “false” in order to avoid overload-
ing the latter term. We will also use the term “genuine” as the opposite of “fake.”

We test two different corruption techniques, which we call random corruption (RC)
and targeted corruption (TC). As the name implies, in RC the training examples to

3A similar technique would also be applicable when using SVMs as the learner, since SVMs assign, as a side-
effect of training, a weight αi to each training example that reflects how hard it has been for the generated
classifier to reclassify it.
4We discovered this fact experimentally in the course of this work. A conversation with Robert Schapire,
the inventor of boosting, later revealed that, while this phenomenon had never been observed before, an a
posteriori justification can be found in the theory that underlies the ADABOOST.MH algorithm, of which
MP-BOOST is a variant. Specifically, the reason is to be found in the fact that (as shown in the proof of
Theorem 1 of [Schapire and Singer 1999]) D j

S+1(di) ∝ exp(−� j(di) · �̂ j(di)). Since CONF ranks the di ∈ Tr

in increasing order of � j(di) · �̂ j(di) value, since DIS ranks them in decreasing order of D j
S+1(di) value,

and since exp(x) is a monotonically increasing function of its argument, it follows that the two rankings are
the same. This property applies not only to ADABOOST.MH but also, straightforwardly, to MP-BOOST (see
[Esuli et al. 2006, Section 3]).

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:9

Table I. Percentage pfn of Corrupted Documents That Are Fake Negatives
as a Function of the Corruption Ratio �

REUTERS-21578 RCV1-V2 OHSUMED
� RC TC RC TC RC TC

.001 0.7% 46.1% 2.8% 65.4% 0.2% 31.0%

.010 0.9% 19.3% 3.1% 43.9% 0.1% 8.4%

.050 0.8% 7.3% 3.1% 22.8% 0.1% 2.3%

.100 0.8% 4.3% 3.1% 14.9% 0.1% 1.2%

corrupt are picked at random from Tr. For simplicity, the same t training examples are
corrupted for all classes cj ∈ C. (This is absolutely equivalent to corrupting different
training examples for the different classes, since our methods work on each of the
classes independently.) TC is instead obtained by

(1) training the classifiers �̂ j on Tr;
(2) reclassifying the di ∈ Tr by means of them;
(3) ranking, for each cj ∈ C, the reclassified examples in increasing order of the confi-

dence |�̂ j(di)| that �̂ j had in classifying them;
(4) corrupting the t top-ranked ones.

The rationale of this technique is that the training examples that �̂ j classifies with
low confidence are more likely to be “borderline” examples for cj; as a result these
examples, should they be manually labelled, would have a high likelihood of being
mislabelled (either due to lack of experience or to lack of adequate time) by a human
annotator. In other words, while RC simulates the corruption of a training set that
might derive from, say, lack of commitment on the part of the human annotators (e.g.,
in crowdsourced annotation), TC simulates the corruption that might derive from in-
complete or imperfect understanding of the semantics of the classes. While it is true
that what counts as a borderline example to a human annotator might not count as
borderline to a text classification system (and vice versa), targeted corruption makes
at least a substantive step in the direction of identifying examples that are more likely
to get mislabelled by annotators.

Unlike in RC, in TC we allow different training examples to be corrupted for different
classes cj ∈ C, since the same document might be controversial, or “borderline”, for one
class but not for others.

Table I illustrates, for each of the datasets we use in this article (see Section 5.3 for
a detailed description of them), for each corruption technique and for each corruption

ratio, the percentage pfn =
∑m

j=1 |FNj|∑m
j=1 |FNj+FPj| · 100% of corrupted documents that are fake

negatives; obviously, pfp = 100% − pfn. For random corruption this percentage tends
to be fairly constant across the different corruption ratios (although different across
datasets), which is obvious since it tends to coincide with the average class frequency
of the entire dataset.

Table I also shows that, for a given corruption ratio, pfn is always higher (and usually
much higher) for TC than for RC; for example, for REUTERS-21578 and � = .001 the
value of pfn is 0.7% for RC and 46.1% for TC. The reason is that TC corrupts not random
but “borderline” examples, and these proportionally include many more positives than
random examples do.

The same table also shows that in targeted corruption, while fake positives tend
to outnumber fake negatives, this tendency is increasingly marked as the corruption
rate increases; for example, for REUTERS-21578 the value of pfn is 46.1% for � = .001
but only 4.3% for � = .100. This is due to the fact that, as in most text classification

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:10 A. Esuli and F. Sebastiani

datasets, the number of genuinely positive examples is much smaller than the number
of genuinely negative examples. As a result, as the number of documents to corrupt
increases the number of positive documents that can be corrupted cannot increase
proportionally.

5.2. Effectiveness Measures

In order to determine which among the three TLC techniques of Section 4 is the best we
will measure how good each technique is at ranking the di ∈ T̂r in such a way that the
corrupted training examples are placed at the top of the ranking. To this end, it seems
natural to adopt one of the measures routinely used for evaluating ad-hoc (ranked)
retrieval. Of course, ad-hoc retrieval is all about ranking the “good” (i.e., relevant to
the information need) examples higher than the bad ones, while TLC aims at ranking
the “bad” (i.e., mislabelled) examples higher than the good ones; but this is obviously
inessential.

As a measure of ranking quality we will choose mean average precision (MAP), which
in our context is defined as follows. Let rρ

j (T̂r) be the ranking for class cj realized

according to TLC technique ρ, of the corrupted training set T̂r, and let [rρ

j (T̂r)]k be a

binary predicate that returns 1 if the example at the k-th position in rρ

j (T̂r) is corrupted

for class cj, and 0 otherwise. We define the precision at n of rρ

j (T̂r) as

Pn(rρ

j (T̂r)) = 1
n

n∑
k=1

[rρ

j (T̂r)]k . (2)

We then define the average precision of rρ

j (T̂r) as

AP(rρ

j (T̂r)) =
∑|T̂r|

k=1 Pk(rρ

j (T̂r))·[rρ

j (T̂r)]k
∑|T̂r|

k=1[rρ

j (T̂r)]k
. (3)

The mean average precision (MAP) of TLC technique r on T̂r is finally defined as

MAP(r(T̂r)) = 1
|C|

∑
cj∈C

AP(rρ

j (T̂r)). (4)

Aside from a measure of TLC effectiveness we will also need a measure of MLTC effec-
tiveness, so as to determine which effectiveness gains in classification can be obtained
if TLC is performed. As a MLTC effectiveness measure that combines the contribu-
tions of precision (π) and recall (ρ) we have used the well-known F1 function, defined
as F1 = 2πρ

π+ρ
= 2TP

2TP+FP+FN , where TP, FP, and FN stand for the numbers of true
positives, false positives, and false negatives, respectively. Note that F1 is undefined
when TP = FP = FN = 0; in this case we take F1 to equal 1, since the classifier
has correctly classified all documents as negative examples. We compute both microav-
eraged F1 (denoted by Fμ

1) and macroaveraged F1 (FM
1). Fμ

1 is obtained by (i) computing
the category-specific values TPi, FPi and FNi, (ii) obtaining TP as the sum of the TPi’s
(same for FP and FN), and then (iii) applying the F1 = 2TP

2TP+FP+FN formula. FM
1 is

obtained by first computing the category-specific F1 values and then averaging them
across the cj’s.

Section 5.4 reports the results of our experiments with the three TLC techniques of
Section 4, each tested under two different corruption techniques, four different corrup-
tion ratios, and three different datasets.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:11

5.3. The Datasets

In our experiments we have used the REUTERS-21578, RCV1-V2, and OHSUMED
datasets.

REUTERS-21578 is probably still the most widely used benchmark in MLTC re-
search.5 It consists of a set of 12,902 news stories, partitioned (according to the
“ModApté” split we have adopted) into a training set of 9,603 documents and a test
set of 3,299 documents. The documents are labelled by 118 categories; in our experi-
ments we have restricted our attention to the 115 categories with at least one positive
training example. The average number of categories per training document is 1.005,
the number of positive training examples per category ranges from a minimum of 1 to
a maximum of 2877, and the average balance ratio6 in the training set is B = .017.

REUTERS CORPUS VOLUME 1 version 2 (RCV1-V2)7 is a more recent MLTC bench-
mark made available by Reuters and consisting of 804,414 news stories produced by
Reuters from 20 Aug 1996 to 19 Aug 1997. In our experiments we have used the
“LYRL2004” split, defined in Lewis et al. [2004], in which the (chronologically) first
23,149 documents are used for training and the other 781,265 are used for testing.
Of the 103 “Topic” categories, in our experiments we have restricted our attention to
the 101 categories with at least one positive training example. Consistently with the
evaluation presented in [Lewis et al. 2004], (i) also categories placed at internal nodes
in the hierarchy are considered in the evaluation, and (ii) as positive training exam-
ples of these categories we use the union of the positive examples of their subordinate
nodes, plus their “own” positive examples. The average number of categories per train-
ing document is thus 3.184, the number of positive training examples per category
ranges from a minimum of 2 to a maximum of 10786, and the average balance ratio in
the training set is B = .063.

The OHSUMED test collection [Hersh et al. 1994] consists of a set of 348,566 MED-
LINE references spanning the years from 1987 to 1991. Each entry consists of sum-
mary information relative to a paper published on one of 270 medical journals. The
available fields are title, abstract, MeSH indexing terms, author, source, and publica-
tion type. Not all the entries contain abstract and MeSH indexing terms. In our experi-
ments we have scrupulously followed the experimental setup presented in Lewis et al.
[1996]. In particular, (i) we have used for our experiments only the 233,445 entries
with both abstract and MeSH indexing terms; we have used the entries relative to
years 1987 to 1990 (183,229 documents) as the training set and those relative to year
1991 (50,216 documents) as the test set; (iii) as the categories on which to perform our
experiments we have used the “main heading” part of the MeSH index terms assigned
to the entries.8 Concerning this latter point, we have restricted our experiments to the

5http://www.daviddlewis.com/resources/testcollections/∼reuters21578/
6We define the average balance ratio in the training set as the value

B = (1 − 1
|C|

∑
ci∈C

| |Tr+
i | − |Tr−

i |
|Tr| |),

where |Tr+
i | (resp., |Tr−

i |) is the number of positive (resp., negative) training examples for class ci. The
average balance ratio is B = 1 only if all classes are perfectly balanced (i.e., they have an equal number of
positive and negative training examples) and is 0 if all classes are perfectly imbalanced (i.e., each of them
has either no positive training examples or – uncharacteristically – no negative training examples).
7http://trec.nist.gov/data/reuters/reuters.html
8MeSH index terms consist of a main heading optionally qualified with subheadings and/or importance
markers. For example, in the MeSH index term Oxytocin/*AA/GE, the main heading is Oxytocin. Several
MeSH index terms may be assigned to the same entry, which means this is a multilabel TC task.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:12 A. Esuli and F. Sebastiani

97 MeSH index terms that belong to the Heart Disease (HD) subtree of the MeSH tree,
and that have at least one positive training example. This is the only point in which
we deviate from Lewis et al. [1996], which experiments only on the 77 most frequent
MeSH index terms of the HD subtree. The average number of categories per training
document is 0.130 (many training documents are unlabelled, and just serve as nega-
tive training examples for all classes), the number of positive training examples per
category ranges from a minimum of 1 to a maximum of 4075, and the average balance
ratio in the training set is B = .003.

There are three main reasons why we have chosen exactly these datasets:

(1) All these datasets are publicly available and very widely used in text classifica-
tion research, which allows other researchers to easily replicate the results of our
experiments.

(2) RCV1-V2 and OHSUMED are among the largest datasets used to date in text
classification research, which lends robustness to our results.

(3) For at least two (REUTERS-21578 and RCV1-V2) of our chosen datasets, the as-
sumption that the uncorrupted training sets do not contain mislabelled training
examples (see Section 5.1) is probably more justified than for any other text clas-
sification datasets available in research, since the document labelling of these
datasets has undergone a lot of quality checking from Reuters editors and text
classification researchers alike [Lewis 2004; Lewis et al. 2004].

In all the experiments discussed in this article stop words have been removed, punc-
tuation has been removed, all letters have been converted to lowercase, numbers have
been removed, and stemming has been performed by means of Porter’s stemmer. Word
stems are thus our indexing units. Since MP-BOOST requires binary input, only their
presence/ absence in the document is recorded, and no weighting is performed as far
as MP-BOOST is concerned. Documents are instead weighted (by standard cosine-
normalized tfidf) (i) for the sake of computing the interdocument similarity values
required by the NN technique of Section 4.2, and (ii) for the further experiments with
the SVM learner that we will later describe in Section 6.

5.4. Results and Discussion

5.4.1. Evaluating the Quality of Training Label Cleaning. Table II reports MAP values ob-
tained by ranking the corrupted training sets by means of the three TLC techniques
(CONF, NN, COMM); the meaning of the fourth column (labelled BAG) will be made
clear in Section 6.2. For each tested corpus, (a) we report results for the full set
of classes, and (b) from these results we single out those concerning the 30 most
infrequent classes and report them separately. (The meaning of the rows labelled
“OHSUMED-S” will be clarified in Section 5.4.2.) The reason we pay special atten-
tion to the most infrequent classes (unlike many researchers who often report results
only for the most frequent classes of a collection) is that they are usually the classes
for which standard supervised learning techniques produce the lowest classification
effectiveness. This means that they are the classes most in need of effectiveness im-
provements, by TLC or other techniques: a user might typically engage in TLC for
these highly problematic classes, and disregard the classes for which high enough ac-
curacy has already been achieved.

In all the experiments MP-BOOST has been run with a number S of iterations fixed
to 1,000. For the NN technique, as the sim(·, ·) measure of inter-document similar-
ity we have used the inner product of the cosine-normalized tfidf vectors of the two
documents. For the same technique we have used the value k = 45, since in using

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:13

Table II.

Mean average precision (MAP) of the four TLC techniques (CONF, NN, COMM, BAG)
on the full set of classes (top 4 rows) and on the 30 most infrequent classes (bottom 4
rows) of REUTERS-21578, RCV1-V2, OHSUMED, and OHSUMED-S. Boldface indi-
cates a statistically significant (two-tailed paired t-test on average precision value over
categories, P < 0.01) best performer for a given combination of corruption ratio (�), cor-
ruption method, and dataset.

Random corruption Targeted corruption
� CONF NN COMM BAG CONF NN COMM BAG

R
E

U
T

E
R

S
-2

15
78

F
U

L
L

S
E

T .001 .596 .458 .110 .213 .510 .369 .107 .230
.010 .653 .771 .367 .427 .608 .525 .245 .291
.050 .968 .907 .841 .790 .677 .621 .320 .340
.100 .973 .961 .900 .850 .665 .634 .422 .457

30
IN

F
R

.001 .748 .790 .231 .423 .648 .681 .091 .235

.010 .674 .966 .490 .531 .581 .670 .181 .287

.050 .982 .992 .842 .803 .647 .701 .281 .361

.100 .981 .985 .903 .861 .673 .651 .431 .439

R
C

V
1-

V
2

F
U

L
L

S
E

T .001 .232 .238 .135 .130 .357 .082 .039 .278
.010 .752 .542 .418 .380 .519 .376 .100 .384
.050 .927 .777 .790 .689 .672 .512 .321 .430
.100 .945 .865 .849 .803 .658 .593 .369 .461

30
IN

F
R

.001 .222 .225 .112 .108 .323 .101 .046 .181

.010 .702 .476 .480 .391 .435 .375 .201 .297

.050 .896 .716 .750 .650 .608 .427 .374 .381

.100 .919 .845 .789 .720 .613 .523 .401 .413

O
H

S
U

M
E

D

F
U

L
L

S
E

T .001 .474 .422 .241 .230 .438 .308 .405 .392
.010 .370 .291 .194 .221 .767 .609 .572 .432
.050 .331 .264 .170 .197 .758 .620 .550 .467
.100 .270 .232 .176 .199 .695 .635 .419 .403

30
IN

F
R

.001 .490 .418 .268 .218 .667 .343 .404 .383

.010 .387 .310 .249 .211 .790 .653 .586 .443

.050 .362 .290 .234 .171 .773 .674 .547 .466

.100 .291 .242 .229 .169 .754 .680 .429 .411

O
H

S
U

M
E

D
-S

F
U

L
L

S
E

T .001 .461 .475 .328 .301 .403 .365 .177 .104
.010 .667 .688 .566 .610 .576 .549 .413 .401
.050 .917 .870 .856 .803 .651 .642 .521 .507
.100 .948 .898 .893 .841 .669 .650 .527 .509

30
IN

F
R

.001 .544 .555 .419 .423 .564 .526 .224 .209

.010 .832 .854 .738 .740 .631 .643 .351 .339

.050 .953 .915 .883 .831 .671 .669 .485 .458

.100 .969 .933 .921 .873 .693 .683 .526 .513

k-NN as a learner for TC Yang [1999], using REUTERS-21578, has found this value
to yield the best effectiveness (and has found negligible differences among values of
k ∈ [30, 65]).9

9In operational conditions, if one had to pick the optimal value of k for the NN technique, one might well
classify all the training documents via the k-NN classifier (using each training document as test and the
other training documents as training), compute the resulting classification accuracy, do all this for various
values of k, pick the value of k that has given the best classification accuracy, and use this value of k for per-
forming the cleaning, on the assumption that what works best for classification also works best for training
data cleaning. This means that, despite appearances to the contrary, the given protocol of choosing a value
of k that has proven optimal in classification experiments on the very same dataset we use is legitimate.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:14 A. Esuli and F. Sebastiani

A “trivial” baseline to the results of Table II is the expected MAP value of the random
ranker (RR), that is, the algorithm which generates random document rankings. As
proven in Resta [2012], the expected AP value of the RR is equal to

AP(RR(�)) = tj − 1
n − 1

+ (n − tj)Hn

n(n − 1)
. (5)

In our setting, tj corresponds to the number of documents which are mislabelled for cj
and n to the number of documents that need to be ranked (i.e., n = |Tr|); Hn denotes
the n-th harmonic number (i.e., Hn = ∑n

k=1
1
k). In the hypothesis (which is indeed al-

ways assumed true in our experiments) that the number tj of mislabelled documents is
the same for all classes cj ∈ C, this is obviously also the expected mean AP value of the
RR. Actual computation of this formula shows that MAP(RR(�)) is approximated by
t
n (and in an especially accurate way for large values of n), which in our case coincides
with the corruption ratio �. Since for all of our datasets and corruption ratios approx-
imating Equation (5) to the third decimal digit exactly yields �, the first column of
Table II also de facto indicates the trivial baseline for the experiments in the corre-
sponding row.

There are several insights that can be gained from observing the results of Table II.
The first observation is that, since picking training examples at random is the only
method one can adopt when wanting to perform TLC, unless equipped with a specific
TLC technique such as CONF, NN or COMM, the improvement that the three TLC
techniques display in Table II over the baseline of Column 1 is considerable.

A second observation is that, with few exceptions and all other things being equal,
each technique performs better for random corruption than for targeted corruption.
This is intuitive, since mislabelled training examples inserted at random in the train-
ing set tend to be easier to spot, since their labels tend to be more blatantly wrong;
conversely, targeted corruption alters the label of examples which are borderline any-
way, and their altered label is thus much more difficult to recognize as such for any
technique. By averaging all the figures contained in Table II we obtain a MAP value
of .554 for random corruption and a value of .487 for targeted corruption.10 (We will
informally call the values resulting from such averages the “TII-average MAP values.”)

The third observation is that, among the three competing TLC techniques, CONF is
a clear winner and COMM is a clear loser. In the vast majority of testing situations,
CONF is either superior (in a statistically significant sense, two-tailed paired t-test on
average precision value over categories, P < 0.01) to both other techniques, or is not
inferior (also in a statistically significant sense) to any of them. The COMM technique
obtains instead, in almost all situations, results inferior (and often radically so) to
CONF and NN. The TII-average MAP values are .625 for CONF, .549 for NN, and
.388 for COMM. The CONF technique tends to be the better one on the RCV1-V2 and
OHSUMED datasets, while the situation is less clearcut on REUTERS-21578. All in
all, both techniques turn out to be respectable contenders, often achieving (sometimes
surprisingly) high MAP values in absolute terms. We conjecture that the reason for
the bad performance of COMM may be found in the fact that MP-BOOST generates a
committee of classifiers that are not independent of each other. Indeed, each member
�̂

j
s of the committee strongly depends on the previously generated member �̂

j
s−1, since

the former is generated according to the distribution resulting from applying �̂
j
s−1

to Tr. As a consequence, agreement is probably not something one could reasonably

10In the computation of these averages, and of other similar ones that will be discussed in the rest of this
article, we disregard the values from the rows marked OHSUMED-S since, as will be apparent from Section
5.4.2, they would duplicate values from the rows marked OHSUMED and would thus bias the final results.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:15

expect from the members of this kind of committee, since sharp disagreement may
derive from reasons different from a bad label, such as the different emphasis that the
different members place, by construction, on a given training example.

A fourth insight we can gain by looking at Table II is that MAP tends to increase
with the corruption ratio �, and may reach extremely high values for high values of
�. The TII-average MAP values are 0.294 for � = .001 (i.e., 0.1% of the documents
are corrupted), 0.427 for � = .010, 0.534 for � = .050, and 0.552 for � = .100. These
high values of MAP are not a trivial result since, although higher corruption ratio
means that there are many mislabelled examples, this does not make them easier to
spot: possibly quite the contrary, since the ratio between correctly labelled and mis-
labelled documents decreases, which means that the mislabelled documents are less
inconsistent with the rest. High MAP values for high corruption ratio is very good
news, since this means that if we have reasons to believe that our training set is ex-
tremely low-quality, we know that our time in cleaning it will not be wasted, since
these techniques will place many of the bad examples near the top of the ranking.11

Note that, when the corruption ratio is high and the class is infrequent, the number
of corrupted documents may well exceed the number of positive instances of the class.
(For instance, the 30 most infrequent classes of REUTERS-21578 have at most 2 pos-
itive training examples each (out of the total 9,603 training examples), which means
that this problem occurs even for a modest corruption ratio such as � = .001.) As a
result, in the corrupted training set the number of fake positives may well exceed the
number of genuine positives. In this case, the good MAP results are due to the discrim-
inating power of the (genuine) negative examples; for instance, the NN technique spots
many fake positives since each of them lies, in the space of examples, close to many
negative examples, which means that its ζ score (see Equation (1)) is extremely low.
Similar arguments apply to the CONF and COMM techniques. We can also observe
that there is no radical or systematic difference between the way our techniques work
on the full set of classes and the way they work on the 30 most infrequent classes.
While substantial differences are observed for some specific combinations (e.g., CONF
on REUTERS-21578 corrupted via random corruption with � = .001), these differ-
ences are not systematic. To witness, the TII-average MAP values are .441 for the full
set and .463 for the 30 most infrequent classes.

5.4.2. Strange News from Planet OHSUMED. As can be noticed by looking at Table II,
when perturbed via random corruption the OHSUMED collection displays a quali-
tatively different behaviour from the other two collections; in fact, while MAP tends
to increase with � in all other cases (i.e., when targeted corruption is used, or when
the other two collections are involved), it tends to decrease when random corruption is
applied to OHSUMED.

We conjecture that this strange phenomenon might be due to the fact that
OHSUMED exhibits a much smaller average balance ratio (B = .003) than the other
two collections (B = .017 for REUTERS-21578, B = .063 for RCV1-V2). This depends
on the fact that its training set contains a huge amount of documents (more than 93%
of the entire training set) that do not belong to any class, and that originally belonged
to other subtrees of the MeSH tree.

In order to test this conjecture we have run additional experiments on a collection
(that we here call OHSUMED-S) obtained from OHSUMED by retaining only the

11Note that a higher corruption ratio means higher a priori probability that MAP is high, as witnessed by
the fact that the expected MAP of the random ranker grows linearly with the corruption ratio. But this
factor alone does not justify the very high MAP values we reach for high corruption ratios, as shown by the
fact that the MAP of our techniques grows with the corruption ratio much faster than the expected MAP of
the random ranker.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:16 A. Esuli and F. Sebastiani

documents with at least one label in the HD subtree. The OHSUMED-S training set
thus contains 12,358 documents, and its average balance ratio in the training set is
B = .020, much higher than the one of the full OHSUMED (B = .003) and similar to
the one of the REUTERS-21578 collection (B = .017).

The results of these additional experiments, displayed in the last eight rows of
Table II, essentially confirm our hypothesis, since they are qualitatively similar to
those observed for REUTERS-21578 and RCV1-V2, and sharply different from those
for the entire OHSUMED. The same similarity among REUTERS-21578, RCV1-V2,
and OHSUMED-S (and their dissimilarity from OHSUMED) will be observed from
Tables III and IV, to be discussed in the following sections

5.4.3. Evaluating the Effects of Noise. Table III reports instead the micro- and macro-
averaged F1 values obtained by the classifiers generated via MP-BOOST before and
after corruption, that is, after training either on the uncorrupted or on the corrupted
training sets. This is an indication of the improvement in classification effectiveness
one might obtain by fully cleaning the original training set when it contains noise at
the corruption ratios indicated. Results are reported for the full set of classes and for
the 30 most infrequent classes of our two datasets.

One insight that this table enables is that random corruption is usually more dam-
aging to effectiveness than targeted corruption, and this fact tends to become evident
as the corruption rate increases. That targeted corruption may have less disruptive ef-
fects can be explained by the fact that TC introduces mislabellings on documents that
are likely borderline examples anyway, that is, documents that two human annotators
might legitimately label in different ways. Mislabelling them may hurt classification
accuracy in the thin region of document space close to the surface that separates the
positives from the negatives, but is not likely to affect accuracy elsewhere. Conversely,
random corruption may have effects anywhere in document space, and may seriously
mislead the classifiers even on cases that would be clearcut otherwise.

A second fact that immediately jumps to the eye is that the decrease in effectiveness
deriving from corruption is considerable even for very modest corruption rates (e.g.,
� = .001, i.e., 0.1%), and already becomes disastrous for slightly less modest ones (e.g.,
� = .010). For instance, for a � = .001 targeted corruption rate (which corresponds
to roughly 10 mislabelled training documents in a training set of more than 9,600
documents), removing the mislabellings from the REUTERS-21578 training set makes
Fμ

1 jump from .821 to .852 for the full set of classes. This is a 3% relative improvement,
that in the ’90s has taken years of improvement in TC technology to achieve. This
shows that one mislabelled document in a thousand can single-handedly defy the
efforts of many TC researchers at improving effectiveness.

While the percentages of deterioration are high throughout the table, there seems
to be a correlation between deterioration and average balance ratio of the training set.
In fact, recall from Section 5.3 that this ratio is B = .003 for OHSUMED, B = .017
for REUTERS-21578, and B = .063 for RCV1-V2. The three datasets are in the same
order when it comes to deterioration; for example, the deterioration in FM

1 at � = .001
(full set of classes, targeted corruption) is −46.3% for OHSUMED, −26.1% for
REUTERS-21578, and −16.3% for RCV1-V2. The fact that, for all three datasets, the
deterioration radically increases when we move to the set of the 30 most infrequent
categories, reinforces the point. This may be explained by the fact that learning a clas-
sifier in the presence of strong imbalance (i.e., few positive training examples) is hard,
and even a moderate corruption ratio can be disruptive on the effectiveness of the clas-
sifier when the positive training examples are, relatively to the entire training set, few.

The third insight that Table III suggests is that the deterioration in effectiveness
resulting from corruption is larger for the more infrequent classes. For instance, in

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:17

Table III.

Micro- and macro-averaged F1 values of the classifiers generated by MP-BOOST for the
full set of classes (5 top rows) and for the 30 most infrequent classes (5 bottom rows) of
REUTERS-21578, RCV1-V2, OHSUMED, and OHSUMED-S after corruption, as a func-
tion of the corruption ratio �. Percentages indicate the relative deterioration in effective-
ness with respect to the uncorrupted training set, which corresponds to the � = .000 (no
corruption) rows. The values in the third column are also a (trivial) baseline for the experi-
ments in the corresponding row.

Random corruption Targeted corruption
� Fμ

1 FM
1 Fμ

1 FM
1

R
E

U
T

E
R

S
-2

15
78

F
U

L
L

S
E

T .000 .852 (0.0%) .606 (0.0%) .852 (0.0%) .606 (0.0%)
.001 .822 (−3.5%) .356 (−41.3%) .821 (−3.6%) .448 (−26.1%)
.010 .583 (−31.6%) .227 (−62.5%) .632 (−25.8%) .254 (−58.1%)
.050 .138 (−83.8%) .074 (−87.8%) .209 (−75.5%) .094 (−84.5%)
.100 .064 (−92.5%) .047 (−92.2%) .116 (−86.4%) .061 (−89.9%)

30
IN

F
R

.000 .373 (0.0%) .245 (0.0%) .373 (0.0%) .245 (0.0%)

.001 .190 (−49.1%) .114 (−53.5%) .139 (−62.7%) .137 (−44.1%)

.010 .038 (−89.8%) .036 (−85.3%) .056 (−85.0%) .052 (−78.8%)

.050 .004 (−98.9%) .004 (−98.4%) .011 (−97.1%) .011 (−95.5%)

.100 .002 (−99.5%) .002 (−99.2%) .006 (−98.4%) .005 (−98.0%)

R
C

V
1-

V
2 F
U

L
L

S
E

T .000 .572 (0.0%) .423 (0.0%) .572 (0.0%) .423 (0.0%)
.001 .557 (−2.6%) .368 (−13.0%) .558 (−2.4%) .354 (−16.3%)
.010 .348 (−39.2%) .224 (−47.0%) .441 (−22.9%) .324 (−23.4%)
.050 .105 (−81.6%) .096 (−77.3%) .211 (−63.1%) .160 (−62.2%)
.100 .050 (−91.3%) .064 (−84.9%) .137 (−76.0%) .107 (−74.7%)

30
IN

F
R

.000 .164 (0.0%) .062 (0.0%) .164 (0.0%) .062 (0.0%)

.001 .102 (−37.8%) .044 (−29.0%) .038 (−76.8%) .035 (−43.5%)

.010 .025 (−84.8%) .024 (−61.3%) .063 (−61.6%) .039 (−37.1%)

.050 .006 (−96.3%) .005 (−91.9%) .015 (−90.9%) .014 (−77.4%)

.100 .005 (−97.0%) .003 (−95.2%) .010 (−93.9%) .008 (−87.1%)

O
H

S
U

M
E

D

F
U

L
L

S
E

T .000 .624 (0.0%) .508 (0.0%) .624 (0.0%) .508 (0.0%)
.001 .340 (−45.5%) .235 (−53.7%) .403 (−35.4%) .273 (−46.3%)
.010 .129 (−79.3%) .072 (−85.8%) .129 (−79.3%) .110 (−78.3%)
.050 .010 (−98.4%) .007 (−98.6%) .070 (−88.8%) .063 (−87.6%)
.100 .002 (−99.7%) .001 (−99.8%) .021 (−96.6%) .019 (−96.3%)

30
IN

F
R

.000 .465 (0.0%) .327 (0.0%) .465 (0.0%) .327 (0.0%)

.001 .118 (−74.6%) .080 (−75.7%) .134 (−71.1%) .139 (−57.6%)

.010 .061 (−86.9%) .037 (−88.7%) .017 (−96.4%) .029 (−91.0%)

.050 .003 (−99.4%) .002 (−99.4%) .008 (−98.3%) .007 (−97.9%)

.100 .001 (−99.8%) .001 (−99.7%) .001 (−99.8%) .001 (−99.7%)

O
H

S
U

M
E

D
-S

F
U

L
L

S
E

T .000 .707 (0.0%) .478 (0.0%) .707 (0.0%) .478 (0.0%)
.001 .539 −(23.8%) .422 −(11.6%) .526 −(25.6%) .396 −(17.1%)
.010 .459 −(35.1%) .279 −(41.7%) .431 −(39.0%) .257 −(46.3%)
.050 .215 −(69.6%) .141 −(70.6%) .171 −(75.8%) .147 −(69.3%)
.100 .177 −(75.0%) .119 −(75.2%) .093 −(86.8%) .095 −(80.1%)

30
IN

F
R

.000 .320 (0.0%) .314 (0.0%) .320 (0.0%) .314 (0.0%)

.001 .093 −(70.9%) .284 −(9.6%) .107 −(66.6%) .294 −(6.5%)

.010 .022 −(93.2%) .045 −(85.6%) .032 −(90.0%) .071 −(77.5%)

.050 .008 −(97.4%) .008 −(97.4%) .015 −(95.4%) .013 −(95.8%)

.100 .002 −(99.4%) .002 −(99.3%) .006 −(98.2%) .005 −(98.3%)

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:18 A. Esuli and F. Sebastiani

the REUTERS-21578 case discussed earlier (� = .001), while the deterioration in Fμ

1
brought about by targeted corruption for the full set of classes is from .852 to .821
(−3.7%), for the 30 most infrequent classes the deterioration is from .373 to .139
(−62.8%)! The same effect may be observed by looking at the FM

1 results (instead of
Fμ

1) across the entire table: the improvements resulting from performing TLC are
much larger for FM

1 than for Fμ

1 , due to the fact that Fμ

1 is not much influenced by the
results on the infrequent classes, while FM

1 is. It is not hard to see why the effect of
even a few mislabelled training examples on the classification accuracy for infrequent
classes can be so large. Given a class with very few positive training examples,
mislabelling even one or a handful negatives as positives can severely alter the set
of positive training examples, while mislabelling even one or a handful of positives as
negatives has the double effect of depleting the already slim set of positive examples
and confusing the learner, by presenting it with negative training documents that are
very similar to the remaining positive ones. It is also likely that, given a class with few
positive training examples, the presence of corrupted training examples close to the
separating surface generates so much uncertainty in the classifier that it may often
decide to vote negative so as to maximize accuracy. This may often be detrimental to
F1, since zero recall means F1 = 0.

Similar observations also hold for random corruption and for the other two datasets.
For reasons of space we do not separately report the results on the (|C| − 30) most
frequent classes of our two datasets. In a nutshell, on these classes the decrease in Fμ

1
is very similar to the decrease on the full set of classes (since Fμ

1 is mostly influenced
by the behaviour on the most frequent classes), while the decrease in FM

1 is smaller
than the decrease in the full set of classes (since FM

1 is equally influenced by all the
classes in C).

5.4.4. Evaluating the Effects of Cleaning. Note that Table III only gives us a picture of
the improvement that might be obtained by cleaning the entire training set. Aside
from probably being too expensive in many real-world situations, this is something
that would defy the purpose of the TLC techniques we have presented. A study should
thus be performed that, for any combination of TLC technique, corruption method,
corruption ratio, and dataset, plots the effectiveness of the classifiers generated after
TLC has been performed, as a function of K, the number of top-ranked training exam-
ples that the human annotator has inspected for misclassifications. This is obviously
a daunting experimentation, since for each such combination and each value of K the
classifiers should be retrained from scratch and the test examples should be relabelled
anew. More modestly, in Table IV we provide a sample such experiment, in which for
the two different corruption methods, four corruption ratios, and all our three datasets,
we test the effectiveness values resulting from

(1) ranking the training documents via the CONF technique;
(2) “uncorrupting” the corrupted documents found at the top K = |Tr|

100 positions (i.e.,
1% of the total) in the ranking;

(3) training the classifiers on this partially cleaned training set;
(4) classifying the test set via the classifiers thus generated.

For instance, on REUTERS-21578 with targeted corruption and � = .001, the MAP
value of .510 that CONF obtains (see Table II) guarantees that Fμ

1 , which corruption
had reduced from .852 to .821, jumps back to .850, and that FM

1 , which corruption
had reduced from .606 to .448, jumps back to .498. What we may also observe from
Table IV is that, unsurprisingly, high values of PK (precision at K) lead to higher

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:19

Table IV.

Fμ
1 and FM

1 values obtained on the full set of classes (top 5 rows) and on the 30 most infrequent
classes (bottom 5 rows) of our four datasets, with classifiers trained before or after performing TLC
on the corrupted training sets by means of the CONF technique with K = |Tr|

100 (i.e., only the top

1% training documents are cleaned); the value of PK (i.e., the precision at K = |Tr|
100 that had been

obtained by CONF) is shown in each case. The “before cleaning” results are taken from Table III.
Boldface indicates a statistically significant improvement (two-tailed paired t-test on F1 value over
categories, P < 0.01).

Random corruption Targeted corruption
� PK Fμ

1 FM
1 PK Fμ

1 FM
1

before after before after before after before after

R
E

U
T

E
R

S
-2

15
78

F
U

L
L

S
E

T

.000 — .852 .852 .606 .606 — .852 .852 .606 .606

.001 .090 .822 .847 .356 .468 .082 .821 .850 .448 .498

.010 .520 .583 .749 .227 .399 .579 .632 .780 .254 .412

.050 .910 .138 .607 .074 .252 .783 .209 .632 .094 .312

.100 .884 .064 .173 .047 .090 .761 .116 .213 .061 .208

30
IN

F
R

.000 — .373 .373 .245 .245 — .373 .373 .245 .245

.001 .094 .190 .260 .114 .187 .084 .139 .202 .137 .197

.010 .553 .038 .219 .036 .174 .599 .056 .201 .052 .183

.050 .936 .004 .077 .004 .064 .813 .011 .080 .011 .072

.100 .916 .002 .013 .002 .013 .776 .006 .020 .005 .019

R
C

V
1-

V
2 F

U
L

L
S

E
T

.000 — .572 .572 .423 .423 — .572 .572 .423 .423

.001 .079 .557 .567 .368 .412 .070 .558 .569 .354 .409

.010 .512 .348 .480 .224 .337 .525 .441 .510 .324 .345

.050 .642 .138 .331 .074 .218 .761 .209 .366 .094 .234

.100 .633 .064 .122 .047 .066 .697 .116 .190 .061 .087

30
IN

F
R

.000 — .164 .164 .062 .062 — .164 .164 .062 .062

.001 .100 .102 .097 .044 .049 .076 .038 .101 .035 .050

.010 .636 .025 .074 .024 .041 .667 .063 .081 .039 .043

.050 .837 .006 .038 .005 .032 .925 .015 .037 .014 .032

.100 .780 .005 .014 .003 .011 .854 .010 .018 .008 .015

O
H

S
U

M
E

D

F
U

L
L

S
E

T

.000 — .624 .624 .508 .508 — .624 .624 .508 .508

.001 .098 .340 .437 .235 .328 .090 .403 .591 .273 .481

.010 .246 .129 .153 .072 .086 .584 .129 .189 .110 .154

.050 .326 .010 .012 .007 .008 .666 .070 .112 .063 .098

.100 .475 .002 .002 .001 .001 .653 .021 .027 .019 .024

30
IN

F
R

.000 — .465 .465 .327 .327 — .465 .465 .327 .327

.001 .100 .118 .176 .080 .129 .095 .134 .289 .139 .187

.010 .269 .061 .081 .037 .056 .731 .017 .081 .029 .053

.050 .352 .003 .004 .002 .002 .852 .008 .012 .007 .010

.100 .501 .001 .002 .001 .001 .823 .001 .004 .001 .004

O
H

S
U

M
E

D
-S

F
U

L
L

S
E

T

.000 — .707 .707 .478 .478 — .707 .707 .478 .478

.001 .083 .539 .706 .422 .474 .048 .526 .701 .396 .478

.010 .639 .459 .686 .279 .375 .535 .431 .682 .257 .379

.050 .939 .215 .513 .141 .218 .809 .171 .388 .147 .206

.100 .977 .177 .430 .119 .174 .798 .093 .222 .095 .128

30
IN

F
R

.000 — .320 .320 .314 .314 — .320 .320 .314 .314

.001 .091 .093 .203 .284 .307 .062 .107 .260 .294 .301

.010 .701 .022 .042 .045 .120 .570 .032 .084 .071 .129

.050 .937 .008 .013 .008 .014 .712 .015 .028 .013 .023

.100 .959 .002 .005 .002 .005 .760 .006 .008 .005 .007

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:20 A. Esuli and F. Sebastiani

increases in F1. For instance, for the full set of REUTERS-21578 classes and targeted
corruption, the value of PK = .082 obtained for � = .001 leads to a mere 3.5% increase
in Fμ

1 (from .821 to .850), but the much higher value of PK = .783 obtained for � = .050
leads to the much higher 302.3% increase in Fμ

1 (from .209 to .632). All these results
are indicative of the fact that TLC is an important and cost-effective way of improving
accuracy for all the datasets of less-than-perfect annotation quality.

Finally, one question we might ask ourselves is: Can we provide guidelines on how
much cleaning we should perform (i.e., what value of K we should use) in order to
reach a desired improvement in effectiveness? Unfortunately, the results reported in
Table IV seem to indicate this is not possible, even assuming one already knows in
advance the corruption ratio � that affects the dataset (and it is far from clear how
� could be known in practice). In fact, our tests show that there is a wide variability
across datasets: for instance, Table IV shows that, for targeted corruption and � =
.001, cleaning 1% of the training set brings Fμ

1 from .569 to .572 (a mere +0.5%) on
RCV1-V2 but brings Fμ

1 from .591 to .624 (+5.5%) on OHSUMED. This means that
we cannot easily “learn” this function on a dataset and assume that these findings
carry over to another dataset.

6. FURTHER EXPERIMENTS

6.1. Using a Low-Variance Learner

A potential concern regarding the “targeted corruption” experiments presented in
Section 5 is that the same learner (MP-BOOST) is used both to corrupt the datasets
and to learn classifiers from the corrupted training sets, which looks somehow
self-referential. In other words, it might be argued that, if the training examples
we corrupt are the ones that the classifier is least confident about (i.e., that are
closer to the separating surface that the classifier itself identifies between the class
and its complement), then a classifier generated from the corrupted training set by
means of the same learning technology used for corrupting the training set will be less
affected by the mislabelled training examples than a classifier generated by means of
a different learning technology.

A related potential concern is that boosting is well known for being a low bias / high
variance learning method [Geman et al. 1992], that is, is known for its sensitivity to
the presence of noise in the training set [Dietterich 2000; Friedman et al. 2000; Maclin
and Opitz 1997]. This might suggest that the levels of degradation in the classification
accuracy of MP-BOOST that we have observed as a result of corruption (see Table III)
are excessive with respect to what learning algorithms characterized by lower variance
might experience.

In order to address both concerns, we have run a batch of experiments in which we
employ, in place of MP-BOOST, an SVM that learns linear classifiers (a) in order to
clean (via an SVM-based version of the CONF technique) our training sets corrupted
via MP-BOOST-based targeted corruption, and (b) in order to test the degradation in
accuracy resulting from the presence of mislabelled training examples. By doing so we
address

(1) the first concern, by having two different learners at play in the two phases of
targeted corruption and cleaning, respectively;

(2) the second concern, by using, in the classification phase, a low-variance learning
method such as linear SVMs.

Implementing CONF via SVMs essentially means using the distance of the example
from the separating surface (which is returned by the classifier together with the bi-
nary prediction for the example) as the confidence with which the example has been

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:21

Table V.

Mean average precision (MAP) of the CONF technique, implemented either
via MP-BOOST or via SVMs, on the full set of classes (top 4 rows) and on the
30 most infrequent classes (bottom 4 rows) of REUTERS-21578, RCV1-V2 and
OHSUMED. The MP-BOOST results are taken from Table II.

Random corruption Targeted corruption
� MP-BOOST SVMs MP-BOOST SVMs

R
E

U
T

E
R

S
-2

15
78

F
U

L
L

S
E

T .001 .596 .560 .510 .490
.010 .653 .610 .608 .592
.050 .968 .880 .677 .634
.100 .973 .950 .665 .710

30
IN

F
R

.001 .748 .643 .648 .534

.010 .674 .743 .581 .591

.050 .982 .932 .647 .640

.100 .981 .962 .673 .633

R
C

V
1-

V
2

F
U

L
L

S
E

T .001 .232 .198 .357 .221
.010 .752 .650 .519 .490
.050 .927 .842 .672 .560
.100 .945 .923 .658 .643

30
IN

F
R

.001 .222 .182 .323 .280

.010 .702 .642 .435 .451

.050 .896 .730 .608 .591

.100 .919 .832 .613 .620

O
H

S
U

M
E

D

F
U

L
L

S
E

T .001 .474 .464 .438 .398
.010 .370 .356 .767 .630
.050 .331 .321 .758 .690
.100 .270 .238 .695 .590

30
IN

F
R

.001 .490 .487 .667 .671

.010 .387 .380 .790 .750

.050 .362 .343 .773 .767

.100 .291 .251 .754 .772

classified; the higher the distance, the higher the confidence. As the SVM-based learner
we have used the implementation from the freely available LibSvm library,12 with a
linear kernel and parameters at their default values.

Table V reports a comparison between the MAP results obtained by performing TLC
with the MP-BOOST version of the CONF technique (that we had already reported in
Table II), and those obtained by performing TLC with the SVM version of the same
technique. As can be appreciated from Table V, the SVMs results are not qualitatively
different from the MP-BOOST results, since they essentially confirm the insights ob-
tained from the analysis of Table II, that is, (i) that TLC performs better for random
corruption than for targeted corruption, and that (ii) MAP tends to increase with �
(increase rates for MP-BOOST and SVMs are also very close to each other). This an-
swers the first concern raised at the beginning of this section, that is, that the results
displayed in Table II might be essentially due to the same learner being used in cor-
rupting the training set and in cleaning it.

Table VI reports instead a comparison between MP-BOOST and SVMs in terms of
the classification accuracy that the classifiers they generate obtain after training on
the corrupted datasets. The side-by-side results show that, in all evidence, there is

12http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:22 A. Esuli and F. Sebastiani

Table VI.

Comparison between the F1 values obtained after corruption with MP-BOOST (indicated
as MP-B) and SVMs. The MP-BOOST results are taken from Table III.

Random corruption Targeted corruption
� Fμ

1 FM
1 Fμ

1 FM
1

MP-B SVMs MP-B SVMs MP-B SVMs MP-B SVMs

R
E

U
T

E
R

S
-2

15
78

F
U

L
L

S
E

T

.000 .852 .839 .606 .549 .852 .839 .606 .549

.001 .822 .816 .356 .322 .821 .821 .448 .431

.010 .583 .684 .227 .234 .632 .644 .254 .183

.050 .138 .262 .074 .094 .209 .234 .094 .080

.100 .064 .144 .047 .064 .116 .130 .061 .056

30
IN

F
R

.000 .373 .369 .245 .240 .373 .369 .245 .240

.001 .190 .191 .114 .118 .139 .185 .137 .112

.010 .038 .050 .036 .043 .056 .045 .052 .043

.050 .004 .006 .004 .005 .011 .012 .011 .010

.100 .002 .002 .002 .002 .006 .003 .005 .002

R
C

V
1-

V
2 F

U
L

L
S

E
T

.000 .572 .565 .423 .421 .572 .561 .423 .421

.001 .557 .550 .368 .360 .558 .553 .354 .365

.010 .348 .342 .224 .218 .441 .390 .324 .290

.050 .105 .098 .096 .085 .211 .150 .160 .124

.100 .050 .051 .064 .045 .137 .120 .107 .098

30
IN

F
R

.000 .164 .160 .062 .060 .164 .160 .062 .060

.001 .102 .110 .044 .050 .038 .109 .035 .051

.010 .025 .030 .024 .023 .063 .060 .039 .041

.050 .006 .008 .005 .006 .015 .014 .014 .013

.100 .005 .007 .003 .006 .010 .008 .008 .008

O
H

S
U

M
E

D

F
U

L
L

S
E

T

.000 .624 .611 .508 .493 .624 .611 .508 .493

.001 .340 .348 .235 .239 .403 .475 .273 .238

.010 .129 .115 .072 .069 .129 .415 .110 .165

.050 .010 .010 .007 .006 .070 .189 .063 .066

.100 .002 .002 .001 .002 .021 .173 .019 .054

30
IN

F
R

.000 .465 .432 .327 .291 .465 .432 .327 .291

.001 .118 .127 .080 .085 .134 .181 .139 .140

.010 .061 .064 .037 .038 .017 .120 .029 .074

.050 .003 .004 .002 .002 .008 .106 .007 .062

.100 .001 .001 .001 .002 .001 .060 .001 .030

qualitatively not much difference between the two learners in terms of how much
their performance is degraded by corruption, with the two learners experiencing sim-
ilar levels of degradation in effectiveness for similar corruption values. For instance,
the degradation in Fμ

1 experienced by MP-BOOST on the full set of REUTERS-21578
classes corrupted with TC at � = .010 is from .852 to .632 (a −25.8% degradation),
which is slightly higher than that experienced by SVMs (from .839 to .644, a −23.2%
degradation); however, the reverse happens on RCV1-V2, with MP-BOOST experienc-
ing smaller degradation (from .572 to .441, i.e., −22.9%) than SVMs (from .561 to
.390, i.e., −30.5%). However, all in all the levels of degradation suffered by MP-BOOST
and SVMs, for identical experimental conditions, is of the same order of magnitude.
This answers also the second of the concerns raised at the beginning of this section,
that is, that the degradation in classification effectiveness due from corruption, as re-
ported in Table III, might essentially be due to the sensitivity to noise of boosting
algorithms.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:23

6.2. Using a Committee of Independent Members

As hinted in Section 5.4.1, one possible explanation for the fact that COMM dramati-
cally underperforms CONF and NN, is that the classifier committee generated by MP-
BOOST is made of members that are hardly independent of each other, which means
that the patterns of agreement and disagreement among the members of the commit-
tee might be substantially different from the case of full independence. It might indeed
be claimed that the intuition upon which COMM rests, that is, that ranking should be
performed in terms of the agreement among a set of subjects, inherently requires inde-
pendence among the members of the set.

As a result, we have performed a batch of experiments in which we have replaced the
classifier committee generated by MP-BOOST with a classifier committee generated
via the bagging technique [Breiman 1996]. Bagging consists of learning a set of S
classifiers �̂

j
s, with 1 ≤ s ≤ S, by training a learner on s different training sets Trs, each

generated by sampling “with replacement” the original training set Tr until |Trs| =
|Tr|. Given a test document di, its classification score is �̂ j(di) = 1

S
∑S

s=1 �̂
j
s(di). The

fact that sampling with replacement is used is a guarantee of the mutual independence
of the classifiers generated.

As the learning device for generating the classifier we have chosen the same weak
learner as used in MP-BOOST (one that generates decision stumps), and as the size
S of the committee we have chosen the same size as we have used in the MP-BOOST
experiments; therefore, our COMM experiments with bagging are different from our
COMM experiments with MP-BOOST only in terms of how the committee is generated.

The results of these experiments are reported in Table II, where COMM with bag-
ging is labelled “BAG.” Unfortunately, an analysis of these results does not confirm
our conjecture that the bad results of COMM were the result of lack of independence
among the members of the committee, since BAG does not systematically outperform
(MP-BOOST -based) COMM, and is also frequently outperformed by it. The BAG exper-
iments are thus a further confirmation that CONF should be the TLC method of choice.

7. RELATED WORK

Several works have used TLC in learning tasks other than text classification, espe-
cially within the realm of computational linguistics. For instance, TLC has been ap-
plied to POS tagging [Abney et al. 1999; Dickinson and Meurers 2003; Eskin 2000;
Nakagawa and Matsumoto 2002; Yokoyama et al. 2005], verb modality identification
[Murata et al. 2005], PP-attachment [Abney et al. 1999], and word segmentation for
East Asian languages [Shinnou 2001]. Some of these works use task-independent TLC
techniques while others do not. Among the former, Abney et al. [1999] and Shinnou
[2001] use the DIS technique discussed at the end of Section 4, while Nakagawa and
Matsumoto [2002] use a technique analogous to DIS that exploits the characteristics
of SVMs. Eskin [2000] uses instead a generative probabilistic model based on the mix-
ture of a majority distribution and an anomalous distribution, and for each training
example computes the probabilities that the example has been generated by either of
the two distributions, deeming the example a mislabelled one if the ratio between the
two falls below a certain threshold. Other works use instead task-specific techniques;
for instance, in a POS-tagging application Dickinson and Meurers [2003] top-rank
multiple occurrences of the same word that have been labelled with different parts
of speech in similar linguistic contexts, a technique that is obviously applicable only to
POS-tagging or other sequence labelling tasks, and not to tasks such as TC. Yet other
methods discussed in the literature, while not task-dependent, are learner-dependent.
For instance, the approach championed in Zeng and Martinez [2001] is only applicable
to neural-network learners, since the cleaning operation is incrementally performed

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:24 A. Esuli and F. Sebastiani

across the training epochs of the neural network. The methods that we propose in this
article are both task-independent and learner-independent.

To the best of our knowledge the only two works that deal with TLC in the con-
text of text classification are the ones by Fukumoto and Suzuki [2004] and Malik and
Bhardwaj [2011].

Fukumoto and Suzuki’s method consists in training an SVM, removing from the
training set the support vectors that the SVM has identified, training a naive Bayesian
classifier on the modified training set, and reclassifying the removed support vectors
with this classifier, declaring mislabelled the support vectors whose original label does
not match the newly assigned label. The intuition behind this technique is that if a
training example has a wrong label for cj, then it likely ends up being a support vector
for the generated classifier. Unlike our techniques, this technique is strictly learner-
dependent, since it only works with SVMs as learners. Additionally, the method is only
limited to cleaning the support vectors; our method examines (and ranks) instead the
entire training set; as a result, experimentally comparing the technique of Fukumoto
and Suzuki [2004] with ours would be problematic.

Malik and Bhardwaj [2011] propose a TLC method based on (i) generating a classi-
fier from a set of high-quality labelled documents, (ii) using it to (automatically) clean
a set of low-quality labelled documents, and (iii) retraining the classifier by using the
cleaned documents as additional training examples. Their work is different from ours
in that we do not assume the existence of sets of labelled documents of different qual-
ity, an assumption that in many application contexts would likely be too restrictive;
our method applies instead to any labelled document set, regardless of its quality.

Note instead that past work on what is often called “noisy text categorization” (see,
e.g., [Agarwal et al. 2007; Vinciarelli 2005]) is quite unrelated to the present article,
since it deals with the categorization of noisy texts (e.g., as obtained from OCR or auto-
matic speech recognition processes), and not with the presence of noisy labels and their
correction. TLC bears also some resemblance to “outlier detection”, as used in many
fields including data mining, fraud detection, or fault diagnosis. One difference is that
the TLC techniques we present here are explicitly addressed to labelled data items,
while outlier detection techniques are more generic with respect to this. Another differ-
ence lies in the very notion of outlier, which is different from the notion of a mislabelled
training item, since an outlier may well indicate [John 1995] a “surprisingly veridical
data item” (e.g., an instance that, although lying far away in the vector space from all
other instances labelled with the class, is also labelled with the class, and correctly so).

Most of the works mentioned at the beginning of this section adopt an a posteriori
evaluation methodology, that is, they perform no training set corruption, and eval-
uate their techniques by ranking the original training sets and then asking human
annotators to look for mislabelled examples throughout the first K ranks, thus report-
ing precision-at-K results. We prefer the a priori evaluation methodology, since (i) it
allows us to work with different corruption ratios, thus addressing the fact that differ-
ent real-world applications may be characterized by different levels of quality in their
data; (ii) it is exempt from evaluator bias, which the a posteriori methodology espe-
cially suffers from when (as is frequently the case) it is the authors themselves that
engage in post-checking the results; (iii) it allows to compute MAP, while the a poste-
riori methodology only allows to compute precision for a specific, usually low value of
K (i.e., the mislabelled items from the (K + 1)-st position onwards have no impact on
the evaluation); (iv) it allows other researchers to replicate the results obtained in the
experiments, while the a posteriori methodology does not. Additionally, the a posteriori
methodology suffers from the problem that the human annotators that are engaged in
the evaluation are not always qualified to decide whether a document is correctly or
incorrectly labelled; labelling a document is sometimes a close call, and in these cases

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:25

the only subjects fully qualified to decide whether a given REUTERS-21578 document
is correctly labelled or not should be the Reuters editors themselves, since they are the
ones who precisely know the intended meaning of the labels.13

Concerning the a priori methodology, we should also note that all the works dis-
cussed in this section that employ it, be they about text classification or other learning
tasks, use the random corruption methodology. As such, the idea of altering a dataset
by targeted corruption is, to the best of our knowledge, an original contribution of the
present article.14

Finally, let us note that the COMM technique is somehow reminiscent of the query-
by-committee active-learning method (see, e.g., [Argamon-Engelson and Dagan 1999;
Freund et al. 1992]), in which unlabelled examples (and not labelled ones, as in our
case) are ranked for human annotation in increasing order of the agreement among
a committee of classifiers that try to classify them. As a measure of (dis)agreement,
Argamon-Engelson and Dagan [1999] use entropy. We have instead proposed using
standard deviation, since entropy can only take into account the binary predictions
of the various classifiers, and not the real-valued confidence in their prediction. Con-
versely, standard deviation can naturally account for predictions expressed as real
numbers, and is thus a better fit in our case.

8. CONCLUSIONS AND FUTURE WORK

We have tested three techniques for training label cleaning on three popular multi-
label text classification benchmarks, checking their ability at spotting and top-ranking
texts that we have purposefully mislabelled, for experimental purposes only, in the
training set. This experimental protocol allows to conveniently study in vitro the be-
haviour of these TLC techniques, and to precisely measure the relative merits of the
various techniques by means of evaluation measures, such as MAP, standard in the
field of ranked retrieval. Studying three TLC techniques with two different corruption
models, at five different corruption levels, across three datasets (one of which consist-
ing of more than 800,000 documents), and studying both the quality of the resulting
rankings and the increase in effectiveness that carrying out TLC may bring about, our
work probably qualifies as the first truly-large scale experimentation of TLC in either
computational linguistics or IR.

Our experimental results show that one such technique, the confidence-based tech-
nique (CONF), achieves good MAP values across different settings deriving from the
choice of different datasets, different class frequency, different corruption ratios, and
different types of corruption, and generally outperforms the nearest-neighbours-based
technique (NN). boosting (DIS) often performs well even if not always the top per-
former, and it might probably be used as the default choice. A third, committee-based
technique (COM) has been shown instead to underperform the other two, regardless
of the level of mutual independence among the members of the classifier committee.

A further result of this article is that a fourth technique (DIS), which had been
proposed before and which was specific to boosting-based learners, is equivalent to the
confidence-based technique (proposed here, which is instead applicable to all learners
equipped with a notion of confidence in their own prediction).

13Analogously, the only person entitled to decide, for the purpose of giving feedback to a learning-based
spam filter, whether an email message is ham or spam, should be the user of the filter herself, as witnessed
from the well-known problem of “gray mail” [Yih et al. 2007].
14On a somehow similar note, in a single-label multiclass classification task, Brodley and Friedl [1996]
corrupt the training data by only switching between classes that tend to be confused with each other. This
is not possible in our case since our task is binary classification.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:26 A. Esuli and F. Sebastiani

Our results also show that TLC is important, since they show that even a single
mislabelled example in a thousand training examples can bring about deteriorations
in effectiveness which are considerable in the general case, and no less than dramatic
for the most infrequent classes and for macroaveraged F1 in general.

Note also that the techniques we have presented here are applicable not only for
cleaning training data, but also for cleaning generic sets of labelled text. That is, the
very same techniques discussed here might be applied by a human annotator in order
to clean a manually annotated text corpus (e.g., the entire RCV1-V2), regardless
of the fact that the corpus is then going to be used for training a text classifier or
not. For instance, this is useful for cleaning test sets, since incorrectly labelled test
examples prevent the accurate measurement of effectiveness, but it is also useful for
cleaning labelled datasets produced within organizations that entirely rely on manual
classification.

This work still leaves some questions unanswered, which might thus be the subject
of future research.

A first question is whether spotting and correcting a training example mislabelled
as positive has the same value as spotting and correcting a training example misla-
belled as negative. While in this article we have made the simplifying assumption that
the two are equally important, future research could address the issue of attributing
different importance values to the two cases, thus bringing about the need of eval-
uating TLC techniques in terms of cost-sensitive evaluation functions such as nor-
malized discounted cumulative gain [Järvelin and Kekäläinen 2000], in place of the
cost-insensitive MAP.

A second question arises if we want to compare TLC with active learning, since
both are effectiveness-enhancing techniques that attempt to minimize the additional
effort requested from a human annotator. Assuming that the annotation of a new un-
labelled document requires an effort x times as large as inspecting an existing labelled
document (for some x ∈ [0, ∞)), is it more cost-effective to annotate the n unlabelled
documents top-ranked by an active learning technique, or to inspect the x · n docu-
ments top-ranked by a TLC technique? Presumably, the answer is a function of the
corruption ratio of the training set, with high (resp., low) corruption ratios making
TLC (resp., active learning) more cost-effective. Identifying the corruption ratio that
acts as a threshold between the two cases would be extremely interesting.

ACKNOWLEDGMENTS

We thank Robert Schapire for discussions on the equivalence of the CONF and DIS techniques. We thank
Giovanni Resta for investigating the formula for the expected AP of the random ranker on our suggestion;
on this theme, thanks also to William Webber and Justin Zobel for useful discussions. Thanks also to the
ICTIR 2009 and TOIS anonymous reviewers for critical work and suggestions that greatly helped to improve
the quality of the article; TOIS Reviewer 1 is to be especially credited for some of the observations presented
in Section 2.

REFERENCES

Abney, S., Schapire, R. E., and Singer, Y. 1999. Boosting applied to tagging and PP attachment. In Proceed-
ings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC’99). 38–45.

Agarwal, S., Godbole, S., Punjani, D., and Roy, S. 2007. How much noise is too much: A study in automatic
text classification. In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM’07).
3–12.

Argamon-Engelson, S. and Dagan, I. 1999. Committee-based sample selection for probabilistic classifiers.
J. Artif. Intell. Res. 11, 335–360.

Breiman, L. 1996. Bagging predictors. Machine Learning 24, 2, 123–140.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

Improving Text Classification Accuracy by Training Label Cleaning 19:27

Brodley, C. E. and Friedl, M. A. 1996. Identifying and eliminating mislabeled training instances. In Proceed-
ings of the 13th Conference of the American Association for Artificial Intelligence (AAAI’96). 799–805.

Chapelle, O., Schölkopf, B., and Zien, A., Eds. 2006. Semi-Supervised Learning. MIT Press, Cambridge, MA.
Cohn, D., Atlas, L., and Ladner, R. 1994. Improving generalization with active learning. Machine Learn. 15,

2, 201–221.
Dickinson, M. and Meurers, W. D. 2003. Detecting errors in part-of-speech annotation. In Proceedings of the

10th Conference of the European Chapter of the Association for Computational Linguistics (EACL’03).
107–114.

Dietterich, T. G. 2000. An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine Learn. 40, 2, 139–157.

Eskin, E. 2000. Detecting errors within a corpus using anomaly detection. In Proceedings of the 1st Con-
ference of the North American Chapter of the Association for Computational Linguistics (NAACL’00).
148–153.

Esuli, A. and Sebastiani, F. 2009. Training data cleaning for text classification. In Proceedings of the 2nd
International Conference on the Theory of Information Retrieval (ICTIR’09). 29–41.

Esuli, A. and Sebastiani, F. 2010. Machines that learn how to code open-ended survey data. Int. J. Market
Res. 52, 6, 775–800.

Esuli, A., Fagni, T., and Sebastiani, F. 2006. MP-Boost: A multiple-pivot boosting algorithm and its appli-
cation to text categorization. In Proceedings of the 13th International Symposium on String Processing
and Information Retrieval (SPIRE’06). 1–12.

Freund, Y., Seung, H. S., Shamir, E., and Tishby, N. 1992. Information, prediction, and query by committee.
In Advances in Neural Information Processing Systems, Vol. 5, MIT Press, Cambridge, MA, 483–490.

Friedman, J., Hastie, T., and Tibshirani, R. J. 2000. Additive logistic regression: A statistical view of boosting.
Ann. Statist. 2, 337–374.

Fukumoto, F. and Suzuki, Y. 2004. Correcting category errors in text classification. In Proceedings of the
20th International Conference on Computational Linguistics (COLING’04). 868–874.

Galavotti, L., Sebastiani, F., and Simi, M. 2000. Experiments on the use of feature selection and negative
evidence in automated text categorization. In Proceedings of the 4th European Conference on Research
and Advanced Technology for Digital Libraries (ECDL’00). 59–68.

Geman, S., Bienenstock, E., and Doursat, R. 1992. Neural networks and the bias/variance dilemma. Neural
Comput. 4, 1, 1–58.

Grady, C. and Lease, M. 2010. Crowdsourcing document relevance assessment with Mechanical fiTurk.
In Proceedings of the NAACL HLT Workshop on Creating Speech and Language Data with Amazon’s
Mechanical Turk. 172–179.

Hersh, W., Buckley, C., Leone, T., and Hickman, D. 1994. OHSUMED: An interactive retrieval evaluation
and new large text collection for research. In Proceedings of the 17th ACM International Conference on
Research and Development in Information Retrieval (SIGIR’94). 192–201.

Järvelin, K. and Kekäläinen, J. 2000. IR evaluation methods for retrieving highly relevant documents. In
Proceedings of the 23rd ACM International Conference on Research and Development in Information
Retrieval (SIGIR’00). 41–48.

John, G. H. 1995. Robust decision trees: Removing outliers from databases. In Proceedings of the 1st Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’95). 174–179.

Lewis, D. D. 2004. Reuters-21578 text categorization test collection Distribution 1.0 README file (v 1.3).
http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt.

Lewis, D. D., Schapire, R. E., Callan, J. P., and Papka, R. 1996. Training algorithms for linear text classifiers.
In Proceedings of the 19th ACM International Conference on Research and Development in Information
Retrieval (SIGIR’96). 298–306.

Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004. RCV1: A new benchmark collection for text categorization
research. J. Machine Learn. Res. 5, 361–397.

Maclin, R. and Opitz, D. W. 1997. An empirical evaluation of bagging and boosting. In Proceedings of the
14th Conference of the American Association for Artificial Intelligence (AAAI’97). 546–551.

Malik, H. H. and Bhardwaj, V. S. 2011. Automatic training data cleaning for text classification. In Proceed-
ings of the ICDM Workshop on Domain-Driven Data Mining. 442–449.

Murata, M., Utiyama, M., Uchimoto, K., Isahara, H., and Ma, Q. 2005. Correction of errors in a verb modal-
ity corpus for machine translation with a machine-learning method. ACM Trans. Asian Lang. Inform.
Process. 4, 1, 18–37.

Nakagawa, T. and Matsumoto, Y. 2002. Detecting errors in corpora using support vector machines. In Pro-
ceedings of the 19th International Conference on Computational Linguistics (COLING’02). 1–7.

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

�

�

�

�

�

�

�

�

19:28 A. Esuli and F. Sebastiani

Resta, G. 2012. On the expected average precision of the random ranker. Tech. rep. IIT TR-04/2012, Istituto
di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, IT.
http://www.iit.cnr.it/sites/default/files/TR-04-2012.pdf.

Schapire, R. and Singer, Y. 1999. Improved boosting using confidence-rated predictions. Machine Learn. 37,
3, 297–336.

Schapire, R. E. and Singer, Y. 2000. Boostexter: A boosting-based system for text categorization. Machine
Learn. 39, 2/3, 135–168.

Schapire, R. E. and Freund, Y. 2012. Boosting: Foundations and Algorithms. MIT Press, Cambridge, MA.
Shinnou, H. 2001. Detection of errors in training data by using a decision list and Adaboost. In Proceedings

of the IJCAI Workshop on Text Learning Beyond Supervision.
Sindhwani, V. and Keerthi, S. S. 2006. Large scale semi-supervised linear SVMs. In Proceedings of the

29th ACM International Conference on Research and Development in Information Retrieval (SIGIR’06).
477–484.

Snow, R., O’Connor, B., Jurafsky, D., and Ng, A. Y. 2008. Cheap and fast - but is it good? Evaluating non-
expert annotations for natural language tasks. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP’08). 254–263.

Vinciarelli, A. 2005. Noisy text categorization. IEEE Trans. Pattern Anal. Mach. Intell. 27, 12, 1882–1895.
Yang, Y. 1994. Expert network: Effective and efficient learning from human decisions in text categorisation

and retrieval. In Proceedings of the 17th ACM International Conference on Research and Development
in Information Retrieval (SIGIR’94). 13–22.

Yang, Y. 1999. An evaluation of statistical approaches to text categorization. Inf. Retriev. 1, 1/2, 69–90.
Yih, W.-T., McCann, R., and Kolcz, A. 2007. Improving spam filtering by detecting gray mail. In Proceedings

of the 4th Conference on Email and Anti-Spam (CEAS’07).
Yokoyama, M., Matsui, T., and Ohwada, H. 2005. Detecting and revising misclassifications using ILP.

In Proceedings of the 8th International Conference on Discovery Science (DS’05). 75–80.
Yu, K., Zhu, S., Xu, W., and Gong, Y. 2008. Non-greedy active learning for text categorization using convex

transductive experimental design. In Proceedings of the 31st ACM International Conference on Research
and Development in Information Retrieval (SIGIR’08). 635–642.

Zeng, X. and Martinez, T. R. 2001. An algorithm for correcting mislabeled data. Intell. Data Anal. 5, 6,
491–502.

Zhu, X. and Goldberg, A. B. 2009. Introduction to Semi-Supervised Learning. Morgan and Claypool, San
Rafael, CA.

Received June 2012; revised January 2013, April 2013; accepted June 2013

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 19, Publication date: November 2013.

