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Discovery is an important aspect of the civil litigation process in the United States of America, in which all

parties to a lawsuit are permitted to request relevant evidence from other parties. With the rapid growth of

digital content, the emerging need for “e-discovery” has created a strong demand for techniques that can be

used to review massive collections both for “responsiveness” (i.e., relevance) to the request and for “privi-

lege” (i.e., presence of legally protected content that the party performing the review may have a right to

withhold). In this process, the party performing the review may incur costs of two types, namely, annota-

tion costs (deriving from the fact that human reviewers need to be paid for their work) and misclassification

costs (deriving from the fact that failing to correctly determine the responsiveness or privilege of a document

may adversely affect the interests of the parties in various ways). Relying exclusively on automatic classifi-

cation would minimize annotation costs but could result in substantial misclassification costs, while relying

exclusively on manual classification could generate the opposite consequences. This article proposes a risk

minimization framework (called MINECORE, for “minimizing the expected costs of review”) that seeks to

strike an optimal balance between these two extreme stands. In MINECORE (a) the documents are first au-

tomatically classified for both responsiveness and privilege, and then (b) some of the automatically classified

documents are annotated by human reviewers for responsiveness (typically by junior reviewers) and/or, in

cascade, for privilege (typically by senior reviewers), with the overall goal of minimizing the expected cost

(i.e., the risk) of the entire process. Risk minimization is achieved by optimizing, for both responsiveness and

privilege, the choice of which documents to manually review. We present a simulation study in which classes

from a standard text classification test collection (RCV1-v2) are used as surrogates for responsiveness and

privilege. The results indicate that MINECORE can yield substantially lower total cost than any of a set of

strong baselines.

CCS Concepts: • Information systems → Clustering and classification;

Additional Key Words and Phrases: E-discovery, technology-assisted review, utility theory, semi-automated

text classification

The method described in this article is the subject of U.S. Provisional Patent Application number 62/518043, filed June 12,

2017. Authors are listed in alphabetical order.

This work has been supported in part by NSF Grants No. 1065250 and No. 1618695.

Authors’ addresses: D. W. Oard, iSchool and UMIACS, University of Maryland, College Park, MD, USA; email:

oard@umd.edu; F. Sebastiani, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, 56124,

Pisa, Italy; email: fabrizio.sebastiani@isti.cnr.it; J. K. Vinjumur, iSchool and UMIACS, University of Maryland, College Park,

MD, USA; email: jyothikv@umd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1046-8188/2018/11-ART11 $15.00

https://doi.org/10.1145/3268928

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 11. Publication date: November 2018.

mailto:oard@umd.edu
mailto:fabrizio.sebastiani@isti.cnr.it
mailto:jyothikv@umd.edu
mailto:permissions@acm.org
https://doi.org/10.1145/3268928


11:2 D. W. Oard et al.

ACM Reference format:

Douglas W. Oard, Fabrizio Sebastiani, and Jyothi K. Vinjumur. 2018. Jointly Minimizing the Expected Costs

of Review for Responsiveness and Privilege in E-Discovery. ACM Trans. Inf. Syst. 37, 1, Article 11 (November

2018), 35 pages.

https://doi.org/10.1145/3268928

1 INTRODUCTION

In civil litigation in the United States of America, a process referred to as e-discovery involves a
review phase in which a set D of digital documents that may contain evidence that would be of
interest in a specific lawsuit are reviewed to identify those that are “responsive” (i.e., relevant)
to a request made by one of the parties. These documents must be “produced” (i.e., turned over)
unless some “privilege” can be asserted (e.g., attorney-client privilege) [17]. Similar processes are
used in other settings (e.g., regulatory investigations, criminal cases, and requests for government
documents under transparency laws) and in other jurisdictions (e.g., e-disclosure in the United
Kingdom).
The usual approach to e-discovery begins with one side in a case (the requesting party) submit-

ting a “request for production” to the other side (the producing party). The producing party then
conducts a search of their information systems to identify documents that are responsive to the
request. This concept of responsiveness, the term we use in this article, is essentially identical to
relevance as understood in information retrieval, although the initial arbiter of responsiveness is
the producing party, not the requesting party, because only the producing party has the right to
inspect all of the documents.
Those documents that are determined to be responsive to the request are then reviewed, usually

in a separate step by more highly trained (and thus more expensive) attorneys, to identify those
that can properly be withheld on the basis of privilege, a broadly inclusive construct that subsumes
several specific reasons for potentially withholding some specific content. One commonly claimed
privilege is attorney-client privilege, which protects communication about litigation that occurs
under rather broad (but not all-inclusive) circumstances between an attorney (or her representa-
tive) and her client (or her client’s representative). Privilege is not absolute; a balancing test must
be done by the courts when factors that mitigate against invoking privilege are claimed by the re-
questing party to exist. For this reason, the existence of documents on which privilege is asserted
must be disclosed to the requesting party by entering them on a privilege log.
E-discovery requires that parties to a case balance three competing goals: (a) producing (to the

requesting party) relevant documents, (b) withholding documents when privilege permits, and (c)
performing all this efficiently. Two aspects of efficiency are important: (i) perhaps most obviously,
the cost of discovery is necessarily limited by the value of the assets that are at stake in the lit-
igation; (ii) also important, however, is that access to justice is advanced when litigants can be
assured of expeditious resolution of their claims. We thus care about both cost and speed.
When most of the documents to be reviewed for responsiveness and privilege were in paper

form, the review process was typically carried out manually. However, with the explosive growth
in digital content, time and cost constraints now often preclude exhaustivemanual review. This has
led to the introduction of a number of techniques for Technology-Assisted Review (TAR), whichmay
be loosely defined as a set of computerized techniques that support attorneys who need to perform
an e-discovery review [3, 6, 27, 31]. An important class of TAR techniques is predictive coding,
whereby one or more classifiers are trained (typically by means of supervised learning methods)
using some manually annotated content. Once trained, these classifiers can automatically classify
the remaining documents in D into documents to be produced and documents to be withheld.
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No trained text classifier will be perfect, so attorneys will often perform some manual review
of the classifier’s results. If the manual review of a sample of the classifier’s output reveals an
unacceptably high error rate, then additional manual review would be needed. Additional training
data might yield improved accuracy, but ultimately some limit will be reached beyond which an
alternative strategy is needed. If the error rate that the automatic classifier ultimately achieves is
still worse than what human reviewers can achieve, then additional manual review can further
decrease the overall error rate. This approach works because in e-discovery we are ultimately
classifying some finite population of documents (i.e., the classifier operates not in an inductive but
in a transductive setting—see, e.g., Reference [20]), and it is thus the accuracy of the classification
decisions, and not of the classifier itself, that we care about.
Our focus in this article is on this final step, in which it has been found that the error rate of

the classifier we have generated with our best efforts is still too high, and thus some additional
manual review will be needed. The key question, then, is which documents should be chosen
for manual review. If the classifier were able to estimate which documents have a higher chance
of being incorrectly classified, then those documents would be good choices. And if some types
of errors were more costly than others (e.g., if failing to withhold a privileged document were
more costly than failing to produce a relevant document), then the ordering of documents for
post-classification manual review should also take into account these differences in error costs.
These two perspectives are complementary, and using them together yields a risk minimization
framework. The goal of this article is, in fact, the design of a risk minimization framework that
accounts for the complex nature of review for responsiveness and privilege in e-discovery. To
the best of our knowledge, this is the first published work that (a) addresses the use of TAR for
performing review by responsiveness and review by privilege at the same time, (b) introduces
the different costs involved in the e-discovery process (namely, the different costs of perform-
ing review by responsiveness and review by privilege, and the different costs that accrue from
different ways of misclassifying a document) as explicit variables of the TAR model, and (c) (as
we will see in the rest of the article) uses utility theory to minimize the expected value of such
costs.
The next two sections present the design of MINECORE (for “minimizing the expected costs

of review”), our risk minimization method for ordering documents for post-classification manual
review and for decidingwhen it would be prudent to end that manual review process. That descrip-
tion is followed by Section 4, which describes our experiment design and presents and discusses
the results of those experiments. Section 5 discusses the prospects for adoption of the presented
method for e-discovery, while Section 6 sets the same method in the context of related work. Sec-
tion 7 concludes the article, also discussing future work that could further extend the potential
impact of these methods.

2 A SEMI-AUTOMATED PREDICTIVE CODING SYSTEM

We describe MINECORE, a semi-automated system whose goal is to identify, within a set of doc-
uments D (the “universe”), the documents that are at the same time (a) responsive to a certain
topic, and (b) nonprivileged.1 Documents that are both responsive and nonprivileged should be
produced to the requesting party; documents that are responsive and privileged should be put
on a privilege log; nonresponsive documents should be withheld. In an abstract way, our problem
can thus be modelled as a single-label classification problem, i.e., as the problem of generating a
classifier h : D → C, with C = {cP , cL, cW } the set of target classes, where

1Table 1 summarizes the mathematical notation that we are going to use in this section and in the rest of the article.

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 11. Publication date: November 2018.



11:4 D. W. Oard et al.

Table 1. Notational Conventions Used in this Article

d A document

D The “universe” (the set of all documents)

cr The class of responsive documents

cp The class of privileged documents

cP The class of documents that should be Produced, with cP ≡ cr ∩ cp
cL The class of documents that should be entered on the privilege Log, with cL ≡ cr ∩ cp
cW The class of the documents that should be Withheld, with cW ≡ cr
c The complement in D of class c

C The set {cP , cL, cW }
y (d ) The true class of document d , with y (d ) ∈ C
h The final classifier D → C
Di j The documents in D whose predicted class is ci and whose true class is c j
D The 3 × 3 contingency table

Di j The number of documents in Di j

hr The text classifier that classifies for responsiveness

hp The text classifier that classifies for privilege

Pr(cr |d ) The (“posterior”) probability that d is responsive, as estimated by hr
Pr(cp |d ) The (“posterior”) probability that d is privileged, as estimated by hp
Prϕ (c |d ) The (“posterior”) probability that d is in c as computed in Phase ϕ

hϕ (d ) Class assigned to d in Phase ϕ

Pr(cP |d ) The probability that d should be Produced

Pr(cL |d ) The probability that d should be entered on the privilege Log

Pr(cW |d ) The probability that d should be Withheld

λmij Unit cost of misclassifying an element of c j into ci (for i, j ∈ {P ,L,W })
Λm The 3 × 3 matrix of λmij costs

λar Unit cost of annotating for responsiveness

λap Unit cost of annotating for privilege

Λa The vector (λar , λ
a
p ) consisting of two unit annotation costs

Km (d ) Misclassification cost incurred in classifying d

Km (D) Global misclassification cost incurred in classifying D
Ka (d ) Annotation cost incurred in classifying d

Ka (D) Global annotation cost incurred in classifying D
R (d, ci ) The risk associated with assigning d to class ci
R (D) Global risk brought about by classifying D
Dr Set of documents to be manually annotated for responsiveness

Dp Set of documents to be manually annotated for privilege

τr = |Dr | Number of documents to be manually annotated for responsiveness

τp = |Dp | Number of documents to be manually annotated for privilege

Ko (d ) Overall (annotation+misclassification) cost incurred for document d

Ko (D) Overall (annotation+misclassification) cost incurred for set D
Ey [·] Expected value over the y random variable

b Batch size (in the ALvUS and ALvRS baselines)
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Table 2. Contingency Table D (a) and Cost Matrix Λm (b) for Our Cost-Sensitive,
Single-Label Classification Problem

Actual
cP cL cW

P
re
d cP DPP DPL DPW

cL DLP DLL DLW

cW DWP DWL DWW

(a)

Actual
cP cL cW

P
re
d cP 0 λm

PL
λm
PW

cL λm
LP

0 λm
LW

cW λm
W P

λm
WL

0

(b)

• cP is the class of the responsive nonprivileged documents, that should be Produced to the
requesting party;

• cL is the class of the responsive privileged documents, that should be entered on the privi-
lege Log;

• cW is the class of the nonresponsive documents, that should be Withheld by the producing
party.

Our classification task2 gives rise to the contingency table illustrated in Table 2(a), where Di j is
the number of documents inDi j , i.e., the number of documents d ∈ D whose predicted class h(d )
is ci and whose true class (which we denote by y (d )) is c j ; it holds that |D| = ∑i, j ∈{P,L,W } Di j . The
classes in {cP , cL, cW } can actually be defined in terms of the two “primitive” classes cr (the class
of responsive documents) and cp (the class of privileged documents); i.e., we define cP ≡ cr ∩ cp ,
cL ≡ cr ∩ cp , and cW ≡ cr , where c j denotes the complement in D of class c j .

Our problem should actually be framed as a cost-sensitive single-label classification problem,
since in e-discovery different classification errors bring about different costs. For instance, pro-
ducing a document that should instead have been entered on the privilege log typically brings
about a higher cost than producing a document that should instead have been withheld. As a con-
sequence, we assume the existence of a cost matrix Λm = {λmij } (for i, j ∈ {P ,L,W }), illustrated in

Table 2(b), where each entry λmij (a unit cost) is a nonnegative value representing the cost incurred

when misclassifying an element of c j into ci (the m superscript stands for “misclassification”).
Here, we consider all unit costs λmii on the main diagonal to be 0 for all i ∈ {P ,L,W }, since correct
classification brings about no misclassification costs; all other unit costs are non null, and are input
parameters to the cost-sensitive classification process and to its evaluation.
We may hypothesize two “extreme” solutions to our classification problem, a fully automated

solution and a fully manual solution.

2.1 The Fully Automated Solution

In the fully automated solution, we train two automated classifiers, hr (which classifies for
responsiveness) and hp (which classifies for privilege), and we apply them to D. The classifiers
may be generated independently of each other, or in some sequence where some mutual depen-
dency is exploited; the fully automated solution is essentially agnostic to how the two are trained.

2The terms “reviewing,” “classifying,” “labeling,” and “annotating” are often taken to be synonyms or near-synonymswhen

they refer to the attribution of a class label to a data item; the 1st of these terms is frequent in the legal world, the 2nd

and 3rd in the machine learning and information retrieval communities, while the 4th is frequent, e.g., in natural language

processing. In this article, we use the term “classifying” when the attribution of the class label is done by an automatic

process, and “annotating” when this attribution is done by a human reviewer.

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 11. Publication date: November 2018.



11:6 D. W. Oard et al.

In particular, the documents to label for training purposes may be selected via random sampling,
or keyword search, or “active learning” [33], or any combination of the above. In this work, we
make the simplifying assumption that training and running automated classifiers has zero cost
(we defer the study of a model that relaxes this assumption to future work).
We may safely assume that hr and hp generate, for each document d ∈ D, two posterior prob-

abilities Pr(cr |d ) and Pr(cp |d ), which represent the classifiers’ confidence in the fact that d is re-
sponsive and that d is privileged, respectively.3 For Pr(cr |d ) a value of 1 represents total certainty
that d ∈ cr , a value of 0.5 represents total uncertainty, and a value of 0 represents total certainty
that d ∈ cr ; the same for Pr(cp |d ). Note that Pr(cr |d ) and Pr(cp |d ) are just subjective estimates
generated by the classifiers, and are not probabilities in any “objective” sense (whatever this might
mean).
We also make the assumption that cr and cp are stochastically independent, an assumption that

is largely verified in practical e-discovery scenarios. A consequence of this assumption is that

Pr(cP |d ) = Pr(cr |d ) Pr(cp |d ),
Pr(cL |d ) = Pr(cr |d ) Pr(cp |d ),
Pr(cW |d ) = Pr(cr |d ).

(1)

We take a risk minimization approach (as from normative—a.k.a. “prescriptive”—decision theory
[1]) and classify each document d in the class

h(d ) = argmin
ci

R (d, ci ), (2)

where R (d, ci ) (the risk associated with assigning d to class ci ) is defined as

R (d, ci ) =
∑

j ∈{P,L,W }
λmij Pr(c j |d ). (3)

As a result, the global risk brought about by this classification is

R (D) =
∑

d ∈D
R (d,h(d )). (4)

In other words, to each document d , we assign the class that brings about the minimum expected
misclassification cost (i.e., the minimummisclassification risk) for d , where expected misclassifica-
tion cost is the sum of themisclassification costs of all possible events (i.e., classes to whichd might
truly belong), each multiplied by the probability of occurrence of the event (which is estimated by
the classifier).
The notion of risk arises naturally in a cost-sensitive classification context, since many courses

of action (or “events,” in the terminology of probability theory) we may opt for (e.g., deciding to
enter a certain document on the privilege log) are taken under uncertainty (e.g., we do not know
for certain if this document should be entered on the privilege log), and each course of action has
its own cost (e.g., incurring a sanction for having entered on the privilege log a document that

3Ideally, these posterior probabilities should be “well calibrated,” which is usually considered a synonym of “good-quality

probabilities.” Posterior probabilities Pr(c |d ) are said to be well calibrated when, given a sample S drawn from some

population, lim|S |→∞ |{d∈c | Pr(c |d )=x }||{d∈S | Pr(c |d )=x }| = x [10]. Intuitively, this property implies that, as the size of the sample S goes to

infinity, e.g., 90% of the documents d ∈ S that are assigned a well calibrated posterior probability Pr(c |d ) = 0.9 belong

to class c . Some classifiers are known to return well-calibrated probabilities (e.g., classifiers trained via logistic regression

[40]). The posterior probabilities returned by some other classifiers are known instead to be not well calibrated (e.g., this

is the case of the naïve Bayesian classifier [11]). Yet some other classifiers (e.g., those trained via SVMs) do not return

posterior probabilities, but generic confidence scores. In these two last cases it is possible to map the obtained posterior

probabilities/confidence scores into well calibrated posterior probabilities via some “calibration” method [28, 40]; see also

Section 4.2 for more on this.
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should instead have been produced). Minimizing risk involves, for example, avoiding courses of
actions for which a combination of probability of occurrence and cost is high. Here, the notion of
“risk” R (d, ci ) is the converse of the notion of utility; one usually speaks of “risk” when each of
the possible events has an associated cost (i.e., an undesired consequence), whereas one usually
speaks of “utility” when each possible event has an associated gain (i.e., a desired consequence).
Anyway, the two notions are interchangeable; we prefer speaking of “risk” here, since the entire
process involves costs, and not gains, for the producing party, and it is the expectation over these
costs that we want to minimize.
As a function for measuring misclassification cost, it is quite natural to use

Km (D) =
∑

i, j ∈{P,L,W }
λmijDi j , (5)

where them superscript stands for “misclassification.” Note that Km (D) is linear, i.e., it can alter-
natively be written as Km (D) =

∑
d ∈D Km (d ), where Km (d ) = λm

h (d )y (d )
is the cost of predicting

document d to be in class h(d ) when its true class is y (d ).

2.2 The Fully Manual Solution

In the fully manual solution, a reviewer (typically: a junior lawyer) annotates all documents in D
for responsiveness. All the documents in D that the reviewer deems responsive are forwarded
to another reviewer (typically: a senior lawyer) who annotates them for privilege, while all the
others are withheld. All the documents that this latter reviewer deems nonprivileged are produced
to the requesting party, while all the documents that she deems privileged are entered on the
privilege log.4 In this work, we make the simplifying assumption that our reviewers are perfectly
reliable (i.e., they do not make annotation errors); we defer the study of a model that relaxes this
assumption to future work.
Let the pair Λa = (λar , λ

a
p ) denote the costs of annotating a single document for responsiveness

(λar ) and for privilege (λ
a
p ), where the a superscript stands for “annotation.” As a function for mea-

suring annotation cost (which derives from the intervention of human reviewers), it is quite natural
to use

Ka (D) = λar τr + λ
a
pτp , (6)

where τr and τp are the numbers of documents manually annotated for responsiveness and for
privilege, respectively.
Note that for the fullymanual solution, τr is the number of documents inD, and τp is the number

of responsive documents in D. Similar to the cost matrix Λm , we assume the unit costs in Λa to
be input parameters, since they are not under the control of the experimenter.

2.3 Our Hybrid Solution

Both the fully automated solution and the fully manual solution have drawbacks. The fully auto-
mated solution has the advantage of zero annotation cost (given our simplifying assumption) but is
disadvantageous, because automated classifiers have a non-negligible misclassification cost. This

4Note that in this solution the two reviewers work sequentially, rather than in parallel. This is justified by cost issues,

i.e., (a) by the fact that it is a waste of resources to annotate by privilege a document that has already been ruled out on

counts of responsiveness, and (b) by the fact that the reviewers who deal with responsiveness usually work at cheaper

hourly rates than the reviewers who deal with privilege. This suggests to have a first pass carried out by the former before

the latter intervene. We also assume, for ease of explanation, that there is only one reviewer for responsiveness and only

one reviewer for privilege. In real applications there are often several reviewers of each type; however, what we describe

straightforwardly applies to the case of more than one reviewer of each type.
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will result, e.g., in withholding documents that should have been produced and producing docu-
ments that should have been withheld; and the cost generated by too many such misclassifications
might be prohibitive. The fully manual solution has the advantage of zero misclassification cost
(given our simplifying assumption) but (i) is expensive, since the costs involved in manual anno-
tation are high, and (ii) is sometimes infeasible, since it might be impossible to manually annotate
each document given the time constraints imposed by the legal process.
We try to strike a balance between the two and devise a three-phase hybrid model where

(1) for each document in D, two classifiers hr and hp first compute probabilities Pr(cr |d )
and Pr(cp |d ), respectively; following this, d is assigned to a class h(d ) ∈ {cP , cL, cW } using
Equation (2);

(2) (junior) human reviewers then annotate for responsiveness a subsetDr of the documents
in D; for each d ∈ Dr

(a) 0 or 1 is assigned to Pr(cr |d ) if the reviewer has deemedd responsive or nonresponsive,
respectively;

(b) h(d ) ∈ {cP , cL, cW } is recomputed using Equation (2); this may caused to be reassigned
to a class in {cP , cL, cW } different from the class currently assigned to it;

(3) (senior) human reviewers annotate for privilege a subset Dp of the documents in D; for
each d ∈ Dp

(a) 0 or 1 is assigned to Pr(cp |d ) if the reviewer has deemed d privileged or nonprivileged,
respectively;

(b) h(d ) ∈ {cP , cL, cW } is recomputed using Equation (2); again, this may cause d to be
reassigned a class in {cP , cL, cW } different from the class currently assigned to it.

There are no constraints on the relationship between Dr and Dp . Therefore, a document d may
belong to just one ofDr andDp , or it may belong to both, or it may belong to neither. If d belongs
to neither, then the class initially assigned in Step 1 is never changed, and remains d’s definitively
assigned class. If d belongs to both, then a new class may be reassigned to d in Step 2 and yet
another class may be reassigned to it in Step 3.
We will call this hybrid model MINECORE (for “minimizing the expected costs of review”). Note

that the fully automated solution described in Section 2.1 coincides with Phase 1 of MINECORE;
in other words, in MINECORE we employ human reviewers to revise, according to a risk mini-
mization principle, some of the labels generated by the fully automated solution.
Of course, the right question here is how to strike an optimal balance, i.e., how to decide (i) which

documents should be annotated (by the junior reviewers) in Phase 2, (ii) which should be annotated
(by the senior reviewers) in Phase 3, and (iii) which others should instead be left unchecked. Our
solution to striking such a balance makes use of

• the posterior probabilities Pr(cr |d ) and Pr(cp |d ) generated by the automated classifiers hr
and hp ;

• the cost matrix Λm and the pair Λa of unit annotation costs.

From now on, by the term cost structure, we indicate a pair Λ = (Λm ,Λa ), with Λm a cost matrix
and Λa a pair (λar , λ

a
p ) of unit annotation costs. The only constraints we impose on Λ are that (i)

all unit misclassification costs in Λm and both unit annotation costs in Λa must be nonnegative;
(ii) all λmii ∈ Λm must be 0; and (iii) it must hold that λar ≤ λap . The rationale of constraint (iii) is
discussed in Section 3.4.
The overall cost of any hybrid process can be quantified as

Ko (D) = Km (D) + Ka (D), (7)
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where the o superscript stands for “overall” and where Km (D) and Ka (D) are the costs defined in
Equations (5) and (6). Ko (D) is the evaluation function we adopt in this work for all systems we
experimentally compare, and not just for MINECORE. Note that for the fully automated solution
Ko (D) coincides with Km (D), since for this solution we have assumed the annotation cost to be
zero, and for the fully manual solution Ko (D) coincides with Ka (D), since for this solution we
have assumed the misclassification cost to be zero.
Function Ko (D) in Equation (7) is linear, since both Km (D) and Ka (D) are linear; we can thus

focus on the cost

Ko (d ) = Km (d ) + Ka (d ), (8)

brought about by an individual document d . In MINECORE, when we need to decide if a document
d should be in Dr (i.e., should be annotated for responsiveness in Phase 2) and if a document d
should be in Dp (i.e., should be annotated for privilege in Phase 3), we do not know the true class
y (d ) of d , so we cannot quantify Km (d ) (hence Ko (d )) precisely. In developing our hybrid method,
we thus again use a risk minimization approach, where we try to minimize an expectation of the
overall cost described in Equation (8); i.e., we want to minimize

Ey[K
o (d )] = Ey[K

m (d ) + Ka (d )], (9)

where E[·] stands for “expected value” and the y index indicates that the expectation is taken
over the y (d ) random variable (i.e., over the values that the true class of d could take). Note that
minimizing Ey[K

m (d ) + Ka (d )] cannot be obtained by independently minimizing Ey[K
m (d )] and

Ey[K
a (d )], sinceKm (d ) andKa (d ) are not independent. That is, we can easily minimizeKm (d ), by

choosing to manually annotate d ; however, if this is done for all d ∈ D,Ka (D) could be very high.
Conversely, we can easily minimizeKa (d ), by choosing to automatically classifyd ; however, if this
is done for all d ∈ D, Km (D) could be very high. The next section thus documents our approach
to jointly minimizing Ey[K

m (d )] and Ey[K
a (d )].

3 JOINTLY MINIMIZING EXPECTED ANNOTATION COSTS AND EXPECTED

MISCLASSIFICATION COSTS

As hinted in Section 2.3, MINECORE essentially consists of an automatic classification phase
(Phase 1), followed by two human annotation phases (Phases 2 and 3) in which only the docu-
ments whose manual annotation is expected to reduce the overall cost are annotated.
For each phase ϕ and for each document d , two posterior probabilities Prϕ (cr |d ) and Prϕ (cp |d )

are generated. Based on these probabilities, a class hϕ (d ) is assigned in Phase ϕ to each document
d as

hϕ (d ) = argmin
ci

Rϕ (d, ci )

= argmin
ci

∑

j ∈{P,L,W }
λmij Prϕ (c j |d ), (10)

where ci ranges on {cP , cL, cW }. Equation (10) is just Equation (2) where the phase ϕ in which (a)
the probabilities are computed and (b) the class is assigned, is made explicit.
The architecture of MINECORE is displayed in Figure 1.

3.1 Phase 1: Classification

In Phase 1 of MINECORE (see Figure 2 for a visual depiction), we train two automated classifiers,
hr (which classifies according to responsiveness) and hp (which classifies according to privilege),
from training data that we assume to be available, and we apply them to D.
As in the fully automated solution described in Section 2.1, we assume that these two classifiers

generate, for each document d ∈ D, two posterior probabilities Pr1 (cr |d ) and Pr1 (cp |d ), which
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Fig. 1. The MINECORE flowchart.

Fig. 2. Dataflow diagram for Phase 1.
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Fig. 3. Dataflow diagrams for Phase 2 (a) and Phase 3 (b).

represent the classifiers’ confidence in the fact that d is responsive and that d is privileged, respec-
tively. Using these posterior probabilities, we assign a class h1 (d ) ∈ {cP , cL, cW } to each document
d ∈ D using Equation (10).

3.2 Phase 2: Annotating for Responsiveness

In Phase 2 of MINECORE (see Figure 3 (a) for a visual depiction) the documents in D are
ranked, and the reviewer (typically: a junior lawyer) annotates the top-ranked τr documents for
responsiveness. Annotating d has the effect of eliminating the uncertainty on the responsive-
ness of d . As a consequence, if d is annotated as responsive we set Pr2 (cr |d ) = 1, while if d is
annotated as nonresponsive we set Pr2 (cr |d ) = 0; no annotation for privilege is performed in
this phase, so Pr1 (cp |d ) = Pr2 (cp |d ). At this point, by using Equation (10), d is assigned a class
h2 (d ) ∈ {cP , cL, cW }, which is possibly different from h1 (d ).

The documents d from the (τr + 1)-th position onwards are not manually annotated; every-
thing remains unchanged for these documents, i.e., Pr2 (cr |d ) = Pr1 (cr |d ) and Pr2 (cp |d ) = Pr1 (cp |d ),
which implies that h2 (d ) = h1 (d ).
To maximize the cost-effectiveness of this approach it is necessary to choose (i) an optimal rank-

ing of the documents in D and (ii) an optimal threshold τr (which acts as the stopping condition
for the annotation process).
Concerning point (i), similar to the approach of Reference [5], we adopt the principle that the

documents inD are to be ranked in terms of the reduction in overall risk that annotating the doc-
ument brings about; the documents whose manual annotation brings about the highest reduction
are top-ranked. If by Cm

ϕ
(d ) we indicate the misclassification cost brought about by attributing

class hϕ (d ) to d , then the difference in overall cost that annotating d for responsiveness brings
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about can be written (using Equation (8)) as

Δor (d ) = Co
2 (d ) −Co

1 (d )

= Cm
2 (d ) +Ca

2 (d ) −Cm
1 (d ) −Ca

1 (d )

= Cm
2 (d ) + λar −Cm

1 (d ).

(11)

However, as discussed in Section 2.3, at the time of rankingD the true class of d (noted as y (d )) is
not known, so Cm

1 (d ) and Cm
2 (d ) are also unknown. Therefore, at the time of ranking D what we

can actually compute, instead of Δor (d ), is an expectation of Δor (d ) over the y (d ) random variable,
i.e.,

Ey[Δ
or (d )] = Ey[C

m
2 (d ) + λar −Cm

1 (d )]

= Ey[C
m
2 (d )] + λar − Ey[Cm

1 (d )]

= R2 (d,h2 (d )) + λ
a
r − R1 (d,h1 (d )).

(12)

Actually, at the time of ranking D, we also do not know the value of the yr (d ) variable (a binary
variable that indicates whether, if the reviewer had to annotate d , she would deem it responsive
or not). This means that also the class h2 (d ) that would be assigned as a result of annotating d
is not known. R2 (d,h2 (d )) is thus not known either, which means that Equation (12) cannot be
used directly as a criterion for ranking D. At the time of ranking D, we thus must compute an
expectation of Ey[Δ

or (d )] over the yr (d ) random variable, i.e.,

Eyry[Δ
or (d )] = Eyr [R2 (d,h2 (d )) + λ

a
r − R1 (d,h1 (d ))]

= Eyr [R2 (d,h2 (d ))] + λ
a
r − R1 (d,h1 (d )),

(13)

where we have shortened Eyr [Ey[·]] as Eyry[·], and where the last simplification is justified by the
fact that R1 (d,h1 (d )) does not depend on yr (d ).
Eyr [R2 (d,h2 (d ))] is computed by assigning probabilities to the events cr (i.e., “the reviewer an-

notates d as responsive”) and cr (“the reviewer annotates d as nonresponsive”). To do this, the
best we can do is to “trust” our classifiers and assume that d will be annotated as responsive with
probability Pr1 (cr |d ) and nonresponsive with probability Pr1 (cr |d ). Each of these probabilities is
multiplied by the misclassification risk that the annotation would bring about, i.e.,

Eyr [R2 (d,h2 (d ))] = R2 (d,h2 (d ) |cr ) · Pr1 (cr |d ) + R2 (d,h2 (d ) |cr ) · Pr1 (cr |d ), (14)

where by R2 (d,h2 (d ) |cr ), we indicate the misclassification risk that would result from assuming
that Pr2 (cr |d ) = 1 and Pr2 (cp |d ) = Pr1 (cp |d ), and by R2 (d,h2 (d ) |cr ), we indicate the misclassifica-
tion risk that would result from assuming that Pr2 (cr |d ) = 0 and Pr2 (cp |d ) = Pr1 (cp |d ).

Equation (13) finally gives us a concrete method for ranking the automatically classified docu-
ments: for each d ∈ D compute Eyry[Δ

or (d )] (the expected increase in overall cost brought about
by annotating d for responsiveness), and rank the documents inD according to their Eyry[Δ

or (d )]
score, top-ranking those with the lowest scores. This guarantees that the reviewer will first anno-
tate the documents characterized by the highest expected reduction in cost that manually annotat-
ing them would bring about. In turn this guarantees that, whatever the amount τr of documents
that the reviewers annotate, the expected cost-effectiveness of the annotation work will be maxi-
mized.
Equation (13) gives us also a concrete method for addressing point (ii) above, i.e., for setting

the τr threshold. The overall cost Ko (d ) is expected to decrease as a result of annotating d (i.e.,
Eyry[Δ

or (d )] < 0) when the cost λar of annotating d is more than offset by the expected reduc-
tion (R1 (d,h1 (d ))) − Eyr [R2 (d,h2 (d ))] inmisclassification cost that annotatingd brings about; con-
versely, if Eyry[Δ

or (d )] ≥ 0, then the expected reduction in misclassification cost is not worth the
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Table 3. Example Documents as Processed Via MINECORE in Phase 2

λar λap λm
PP

λm
PL

λm
PW

λm
LP

λm
LL

λm
LW

λm
WP

λm
WL

λm
WW

1 2 0 5 3 8 0 45 3 13 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
r(
c
r
|d)

P
r(
c p
|d)

P
r(
c
P
|d)

P
r(
c
L
|d)

P
r(
c W
|d)

R
(d
,
c
P
)

R
(d
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L
)

R
(d
,
c W

)

h
(d
)

R
(d
,
h
(d
))

E
y
r
[R

(d
)]

E
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r
y
[Δ

o
r
(d
)]

A
n
n
o
ta
te
?

Equation
(1)

Equation
(1)

Equation
(1)

Equation
(3)

Equation
(3)

Equation
(3)

Equation
(2)

Equation
(3)

Equation
(14)

Equation
(13)

d1

0.90 0.70 0.27 0.63 0.10 3.45 6.66 9.00 cP 3.45

2.16 −0.29 Yes1.00 0.70 0.30 0.70 0.00 3.50 2.40 10.00 cL 2.40

0.00 0.70 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

d2

0.85 0.25 0.63 0.21 0.15 1.51 11.85 4.67 cP 1.51

1.06 0.55 No1.00 0.25 0.75 0.25 0.00 1.25 6.00 5.50 cP 1.25

0.00 0.25 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

d3

0.22 0.45 0.12 0.09 0.78 2.83 36.06 1.65 cW 1.65

0.49 −0.15 Yes1.00 0.45 0.55 0.45 0.00 2.25 4.40 7.50 cP 2.25

0.00 0.45 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

d4

0.00 0.70 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

0.00 1.00 No1.00 0.70 0.30 0.70 0.00 3.50 2.40 10.00 cL 2.40

0.00 0.70 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

d5

1.00 0.70 0.30 0.70 0.00 3.50 2.40 10.00 cL 2.40

2.40 1.00 No1.00 0.70 0.30 0.70 0.00 3.50 2.40 10.00 cL 2.40

0.00 0.70 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

additional annotation effort. Therefore, the criterion we adopt to decide when to stop annotating
is the following:

Stopping condition (responsiveness). Let d be the document at the kth rank
position. If Eyry[Δ

or (d )] < 0, then annotate d by responsiveness and move on to
the document in the (k + 1)-th rank position, else stop annotating.

The rationale for this criterion is that a reviewer will annotate a document only if this action is
expected to diminish overall cost. Since the likelihood of diminishing overall cost decreases the
more we go down the ranking, it follows that we should choose τr to be

τr = |{d |Eyry[Δor (d )] < 0}|. (15)

We now offer some concrete examples to show how Phase 2 works.

Example 3.1. Table 3 shows some example documents processed in Phase 2.
The upper table shows the cost structure that we use in the lower table (the specific values

were chosen for clarity of illustration, and are not assumed to be realistic). In the lower table, each
example document d is represented as a triplet of rows. The 1st row of each triplet shows the
values of h(d ) (Column 10) and R (d,h(d )) (Column 11) that result from the posterior probabilities
Pr1 (cr |d ) and Pr1 (cp |d ) (Columns 2 and 3) returned by the automated classifiers of Phase 1. The
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2nd and 3rd row of each triplet show instead the values of h(d ) and R (d,h(d )) that would result
if the document were manually annotated as responsive (2nd row) or unresponsive (3rd row),
which would cause Pr2 (cr |d ) to become 1 or 0, respectively (Column 2). Column 12 represents
Eyr [R (d )], the expected cost of d after annotation for responsiveness, while Column 13 represents
Eyry[Δ

or (d )], the expected reduction in the cost of d that annotating it by responsiveness would
bring about. Column 14 indicateswhether, as a result of the difference between the value in Column
13 and λar , it is decided to annotate d for responsiveness. The 3rd row of the header indicates the
equations according to which the values in the respective columns are computed.
Let us look at some specific examples.
For d1, the difference between the 1st and 2nd rows shows that a change in P (cr |d ) can bring

about a change between which of cP and cL is picked. This is interesting, since at first sight we
might think that the decision whether to produce the document or file it into the privilege log
should only depend on privilege-related considerations, since both actions concern documents
whose responsiveness has been ascertained already; Equation (2) is the reason why this does not
necessarily happen.
For d2, annotation by responsiveness is expected to bring about a benefit in terms of misclassi-

fication risk, but not high enough to offset the cost of annotating the document.
An interesting fact that example d3 shows is that decreasing uncertainty does not always result

in decreasing risk: the difference between the values of R (d,h(d )) of the 1st and 2nd rows shows
that, if the reviewer annotated d3 as responsive, R (d,h(d )) would actually increase. This may hap-
pen, for example, when we rule out the possibility that d belongs to a class ci that is not “risky”
(i.e., a class whose λmij ’s are all low), thereby increasing the probability that d belongs to other

“riskier” classes.
Document d4 represents an extreme case, since the classifier claims to be already certain that

d4 is nonresponsive. Therefore, having d4 annotated by responsiveness is expected not to bring
about any advantage, since the model assumes that the reviewer will certainly confirm d4 to be
nonresponsive. Similar comments may be made for d5, which the model assumes to be certainly
responsive.

3.3 Phase 3: Annotating for Privilege

At this point, in Phase 2 the human reviewer has manually annotated the τr documents charac-
terized by the lowest value of Eyry[Δ

or (d )]. Phase 3 can now start.
Phase 3 of MINECORE (see Figure 3(b) for a visual depiction) does for privilege essentially what

Phase 2 did for responsiveness; the steps we go through in this section mimic fairly closely those
described in Section 3.2, and are thus described more concisely.
In Phase 3 the documents inD are again ranked, and the reviewer (typically: a senior lawyer) an-

notates the top-ranked τp documents for privilege.5 If the reviewer annotates d as privileged, then
we set Pr3 (cp |d ) = 1, while if the reviewer annotates d as nonprivileged, then we set Pr3 (cp |d ) = 0;
no annotation for responsiveness is performed in this phase, so Pr2 (cr |d ) = Pr3 (cr |d ). At this point,
by using Equation (10), d is assigned a class h3 (d ) ∈ {cP , cL, cW }, which is possibly different from
h2 (d ). The documents d from the (τp + 1)-th position onwards are not manually annotated for
privilege; for these documents, Pr3 (cr |d ) = Pr2 (cr |d ) and Pr3 (cp |d ) = Pr2 (cp |d ), which implies that
h3 (d ) = h2 (d ). Classh3 (d ) ∈ {cP , cL, cW } is the final class assigned tod byMINECORE, and the class

5In an operational setting, the senior lawyer performing this final review might also correct any false positive annotations

for responsiveness that they notice, but we do not presently model corrections to responsiveness that might bemade during

Phase 3.
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that determines whether the document is produced to the requesting party (h3 (d ) = cP ), entered
on the privilege log (h3 (d ) = cL), or withheld (h3 (d ) = cW ).
The difference Δop (d ) in overall cost that annotating d for privilege brings about is

Δop (d ) = Co
3 (d ) −Co

2 (d )

= Cm
3 (d ) +Ca

3 (d ) −Cm
2 (d ) −Ca

2 (d )

= Cm
3 (d ) + λap −Cm

2 (d ).

(16)

Similar to Equation (11), and for the same reasons, Equation (16) cannot be used directly as a
criterion for ranking D. At the time of ranking D, we thus compute the expected difference in
cost

Ey[Δ
op (d )] = Ey[C

m
3 (d ) + λap −Cm

2 (d )]

= Ey[C
m
3 (d )] + λap − Ey[Cm

2 (d )]

= R3 (d,h3 (d )) + λ
a
p − R2 (d,h2 (d )).

(17)

Due to the fact that the value of yp (d ) (a binary variable that indicates whether, if the reviewer
had to annotate d , she would deem it privileged or not) is not known at the time of ranking, we
must compute an expectation of Ey[Δ

op (d )] over the yp (d ) random variable, i.e.,

Eypy[Δ
op (d )] = Eyp [R3 (d,h3 (d )) + λ

a
p − R2 (d,h2 (d ))]

= Eyp [R3 (d,h3 (d ))] + λ
a
p − R2 (d,h2 (d )),

(18)

where we have shortened Eyp [Ey[·]] as Eypy[·]. To compute Eyp [R3 (d,h3 (d ))], we assume that
d will be annotated as privileged with probability Pr1 (cp |d ) and nonprivileged with probability
Pr1 (cp |d ), thus bringing about

Eyp [R3 (d,h3 (d ))] = R3 (d,h3 (d ) |cp ) · Pr1 (cp |d ) + R3 (d,h3 (d ) |cp ) · Pr1 (cp |d ). (19)

Analogous to Equation (13), Equation (18) now gives us a concrete method for ranking the doc-
uments: rank the documents in D according to their Eypy[Δ

op (d )] score, top-ranking those with
the lowest scores. The same equation also gives us a concrete method for setting the τp thresh-
old: along the same lines discussed for Phase 2, the criterion we adopt to decide when to stop
annotating is the following:

Stopping condition (privilege). Let d be the document at the kth rank position.
If Eypy[Δ

op (d )] < 0, then manually annotate d by privilege and move on to the
document in the (k + 1)-th rank position, else stop annotating.

and we should choose τp to be

τp = |{d |Eypy[Δop (d )] < 0}|. (20)

Example 3.2. Table 4 shows the same example documents from Table 3 as they are processed in
Phase 3. Documents d1 and d3 were annotated for responsiveness in Phase 2; for them, P (cr |d ) has
thus been updated (we here assume that they have both been deemed responsive by the human
reviewers, which means that their P2 (cr |d ) value is 1), while for the other three documents it is
the case that P1 (cr |d ) = P2 (cr |d ).
Overall, out of the 5 example documents, two (d1 and d3) are annotated for both responsiveness

and privilege, two (d2 andd4) are annotated for neither, and one (d5) is annotated for privilege only.
One interesting case is represented by d4. Since its Pr(cr |d ) value is 0, the system is already

certain that its class is cW , so the expected reduction in cost that would derive from annotating
it by privilege (Column 13) is 0. So, the model sanctions that annotating d4 by privilege would
be completely useless. In other words, what is a standard practice of e-discovery (i.e., documents
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Table 4. The Same Example Documents from Table 3 as Further Processed Via MINECORE in Phase 3
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(1)

Equation
(1)

Equation
(1)

Equation
(3)

Equation
(3)

Equation
(3)

Equation
(2)

Equation
(3)

Equation
(19)

Equation
(18)

d1

1.00 0.70 0.30 0.70 0.00 3.45 3.50 2.40 cL 10.00

0.00 −0.40 Yes1.00 1.00 0.00 1.00 0.00 5.00 0.00 13.00 cL 0.00

1.00 0.00 1.00 0.00 0.00 0.00 8.00 3.00 cP 0.00

d2

0.85 0.25 0.63 0.21 0.15 1.513 11.85 4.67 cP 1.51

1.51 2.00 No0.85 1.00 0.00 0.85 0.15 4.70 6.75 11.05 cP 4.70

0.85 0.00 0.85 0.00 0.15 0.45 13.55 2.55 cP 0.45

d3

1.00 0.45 0.55 0.45 0.00 2.25 4.40 7.50 cP 2.25

0.00 −0.25 Yes1.00 1.00 0.00 1.00 0.00 5.00 0.00 13.00 cL 0.00

1.00 0.00 1.00 0.00 0.00 0.00 8.00 3.00 cP 0.00

d4

0.00 0.70 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

0.00 2.00 No0.00 1.00 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

0.00 0.00 0.00 0.00 1.00 3.00 45.00 0.00 cW 0.00

d5

1.00 0.70 0.30 0.70 0.00 3.50 2.40 10.00 cL 2.40

0.00 −0.40 Yes1.00 1.00 0.00 1.00 0.00 5.00 0.00 13.00 cL 0.00

1.00 0.00 1.00 0.00 0.00 0.00 8.00 3.00 cP 0.00

The structure of the tables is the same as those of Example 3.

that are deemed nonresponsive are withheld without checking the existence of privilege) here
“emerges” as a consequence of MINECORE.

The overall algorithm that implements MINECORE is summarized as Algorithm 1.

3.4 A Few Observations

A first thing to observe is that, in MINECORE, a document can end up being manually annotated
only for responsiveness, only for privilege, for both responsiveness and privilege, or for neither
responsiveness nor privilege. Note that annotating a document d for responsiveness has the effect
of reducing the number of possible misclassification types for d . For example, if d is annotated as
responsive, this is tantamount to turning (for d) the 3 × 3 matrixes of Table 2 into 2 × 2 matrixes,
as a result of removing the cW row and the cW column; if it is instead annotated as nonresponsive,
then the 3 × 3 matrixes become 1 × 1 matrixes, where only the cW row and the cW column have
survived. Likewise, if d has been annotated as responsive, also annotating it by privilege has the
effect of turning the 2 × 2 matrixes into 1 × 1 matrixes.
A second thing to observe is that Phases 2 and 3 are structurally identical, since Phase 2 does for

responsiveness exactly what Phase 3 does for privilege. In particular, note that Phase 3 processes all
documents d ∈ D, and not just those that Phase 2 has decreed responsive or probably responsive
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ALGORITHM 1: MINECORE, a hybrid model for jointly minimizing the expected costs of review for

responsiveness and privilege.

Input: A training set T rr of documents labeled for responsiveness;
A training set T rp of documents labeled for privilege;
Documents D to be analysed for possible production to the requesting party;
Cost structure Λ = (Λm, Λa ).

Output: A partition of D into the following three sets:
– Set DP of documents to be produced to the receiving party;
– Set DL of documents to be put on the privilege log;
– Set DW of documents to be withheld;
Annotation cost Ka (D) incurred in the process.

/* Phase 1 */
Train classifiers hr and hp from T rr and T rp , respectively;

for d ∈ D do
Compute Pr1 (cr |d ) by means of hr and Pr1 (cp |d ) by means of hp ;

Compute h1 (d ) via Equation (10);
end

/* Phase 2 */

for d ∈ D do
Pr2 (cr |d ) ← Pr1 (cr |d );Pr2 (cp |d ) ← Pr1 (cp |d ); ComputeEyr y [Δ

or (d )] using Equation (13);

end

Generate a ranking RrD of D in increasing order of Eyr y [Δ
or (d )];

/* RrD (k ) denotes the document at the k-th rank position in RrD */

k ← 1; τr ← 0;

while Eyr y [Δ
or (RrD (k ))] < 0 do

Have the reviewer annotate document RrD (k ) for responsiveness;
if RrD (k ) has been judged responsive by the reviewer then

Pr2 (cr |RrD (k )) ← 1

else
Pr2 (cr |RrD (k )) ← 0

end

τr ← τr + 1; k ← k + 1;
end

for d ∈ D do
Compute h2 (d ) using Equation (10);

end

/* Phase 3 */

for d ∈ D do
Pr3 (cr |d ) ← Pr2 (cr |d ); Pr3 (cp |d ) ← Pr2 (cp |d ); Compute Eypy [Δ

op (d )] using Equation (18);

end

Generate a ranking R
p

D of D in increasing order of Eypy [Δ
op (d )];

/* R
p

D (k ) denotes the document at the k-th rank position in R
p

D */

k ← 1; τp ← 0;

while Eypy [Δ
op (R

p

D (k ))] < 0 do

Have the reviewer annotate document R
p

D (k ) for privilege;
if R

p

D (k ) has been judged privileged by the reviewer then

Pr3 (cp |RpD (k )) ← 1

else

Pr3 (cp |RpD (k )) ← 0

end

τp ← τp + 1; k ← k + 1;

end

for d ∈ D do
Compute h3 (d ) using Equation (10);

end

DP ← {d |h3 (d ) = cP }; DL ← {d |h3 (d ) = cL }; DW ← {d |h3 (d ) = cW };
Compute Ka (D) using Equation (6).
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(see the case of document d4 in Example 4). One might thus wonder if we could switch the order of
Phase 2 and Phase 3 without negatively impacting (or perhaps even positively impacting) Ko (D).
The answer is no, and the reason lies in the fact that, in typical e-discovery scenarios, λap is higher
ormuch higher than λar (we indeed imposed the constraint that λar < λap in Section 2.3). This has the
consequence that it makes sense to employ the expensive (as characterised by λap ) senior reviewers
for annotating documents that the cheap (as characterised by λar ) junior reviewers have already
“pre-filtered.”
A third important observation is about ranking. During Phase 2 MINECORE clearly separates

the set (let us call it Dman
2 ) of the τr documents that should be annotated from the set (let us call

it Daut
2 ) of the ( |D| − τr ) documents that should not be annotated (the same happens at the end

of Phase 3). If the human reviewer annotates all and only the former, then one might wonder why
is ranking useful at all. While ranking is indeed unnecessary in theory, it is useful in practice, for
two reasons:

• The choice of which documents to put in Dman
2 and which to put in Daut

2 is far from
perfect, since it relies on automatically generated posterior probabilities. As a result, the
human reviewer might find out, at the very moment she is invited to stop annotating, that
she was still finding many mislabeled documents, and she might thus want to annotate
some more documents to be on the safe side;

• If, for some reason, the reviewer stops annotating before the stopping condition is reached,
then the fact that she has annotated by following the ranked list guarantees that the cost-
effectiveness of her work has been maximized.

As a result, we indeed assume that rankings are generated (and followed by the human reviewers)
in Phases 2 and 3.

4 EXPERIMENTS

In this section, we describe a number of experiments that we have conducted to test the cost-
effectiveness of MINECORE.6

4.1 Test Collection

One problem that hinders the evaluation of MINECORE is that in the world of e-discovery, at
present, there is no publicly available collection of documents that are annotated by both re-
sponsiveness and privilege.7 A way out of this could be to generate such an annotated collec-
tion ourselves: however, this would be a major feat in terms of annotation cost, since it takes
real lawyers to do this annotation, and real lawyers (especially senior ones, whom we would
need to annotate for privilege) can be extremely expensive. We bypass this problem by running
“simulated” experiments, on a collection unrelated to e-discovery in which documents can be-
long to more than one class, and by repeatedly picking two classes to play the role of cr and cp ,
respectively.
As a test collection, we have chosen RCV1-v2, a standard, publicly available benchmark for text

classification first presented in Reference [25] and consisting of 804,414 news stories produced
by Reuters from 20 August 1996 to 19 August 1997.8 RCV1-v2 ranks as one of the largest corpora

6The code that implements MINECORE is available at https://github.com/minecore2018/tois_code.git.
7The TREC 2010 Legal Track included one (nontopical) “topic” annotated by privilege and several topics annotated for

responsiveness, but the intersection between the former and each of the latter is minimal, because the samples were drawn

independently for each.
8http://trec.nist.gov/data/reuters/reuters.html.
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currently used in text classification research; as pointed out in Reference [12], it suffers from “drift”,
i.e., from substantial variability between the training set and the test set, which makes it a chal-
lenging test collection. RCV1-v2 is multi-label, i.e., a document may belong to several classes at the
same time, which makes it suitable for our purposes. In Reference [25] the collection is partitioned
into a training set of 23,149 documents and a test set of 781,265 documents, the latter being split
into four chunks of 199,328, 199,339, 199,576, 183,022 documents, respectively. In the experiments
reported in this article, we have used the 23,149 training documents as the training setTr , and the
first chunk of 199,328 test documents as the test set Te .
In the “Topic” hierarchy of RCV1-v2 there are 103 classes, of which 101 have at least one posi-

tive training example. Since we experiment with pairs of classes (representing cr and cp ), we could
in principle experiment with 1012 = 10, 201 different pairs. Aside from representing a substantive
computational load, this would also mean experimenting with classes whose prevalence is, given
typical e-discovery scenarios, not realistic. We have therefore limited our experiments to pairs
(cr , cp ) such that the prevalence of cr in the entire RCV1-v2 collection is in [0.03,0.07] and the
prevalence of cp in the responsive documents is in [0.01,0.20]. This broad range is actually seen in
e-discovery practice, with some classification tasks run in “needle in a haystack” conditions, and
others run on collections that have been prescreened when they were acquired to have as high
a responsiveness prevalence as can be achieved [27]. For each of the 24 responsiveness classes
that meet the prevalence criterion, we have randomly selected 5 privilege classes that meet the
prevalence criterion. This gives rise to 120 class pairs, which is the set we use for the experiments
described in this article. We note that our process for selecting category pairs was entirely auto-
matic, in contrast to the process used in the TREC 2002 Filtering Track, where an effort was made
to select pairs that were related in ways that were expected to reflect some plausible information
need at their intersection [29].

4.2 The Learning Algorithm

For all the experiments reported in this article, we have used Support Vector Machines (SVMs) as
the learning device, since they have consistently delivered strong performance in text classifica-
tion. We have used the well-known SVM-LIGHT implementation due to Joachims [18], for which
we have used the default parameter values; in particular, we have used a linear kernel, due to its
well-known good performance in text classification tasks [19]. Concerning the vector represen-
tations fed to the SVM learner, to enhance reproducibility, we have used the ones made available
as Online Appendix 13 of Reference [25], which consist of vectors of unigrams obtained via stan-
dard tokenization, stopwording, stemming, and tf-idf (in the “ltc” variant) weighting.9 We refer to
Reference [25] for more details on the preprocessing techniques that were used to generate them.
Classifiers generated via SVMs return confidence scores that are not posterior probabilities (see

also Footnote 3); these scoresmust thus be converted into posterior probabilities, sinceMINECORE
essentially depends on the availability of such probabilities. Given that the returned scores are
a monotonically increasing function of the classifier’s confidence in the fact that the document
belongs to the class, this conversion may be obtained by applying to the scores a logistic function,
since such a function has a sigmoidal shape thatmonotonicallymaps (∞,+∞) into [0, 1].We obtain

9In actual practice in e-discovery additional features would be used, particularly for privilege classification, since the roles

of the parties who sent and received document are also important. In our prior work on privilege classification [36], we

have found that privilege classification accuracy is in line with what we would expect from topic classification when the

feature set is well designed.
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Table 5. Cost Structures Used in Our Experiments, as Elicited from Different Experts

λar λap λPL λPW λLP λLW λWP λWL

CostStructure1 1.00 5.00 600.00 5.00 150.00 3.00 15.00 15.00
CostStructure2 1.00 5.00 100.00 0.03 10.00 2.00 8.00 8.00
CostStructure3 1.00 5.00 1000.00 0.10 1.00 1.00 1.00 1.00

Each individual cost is expressed in US$.

“well calibrated” posterior probabilities via so-called “Platt scaling,” i.e., by using a “generalized”
(i.e., parametric) logistic function and optimizing its parameters via k-fold cross-validation.10

4.3 Cost Structures

To use realistic misclassification costs and annotation costs, we have chosen to elicit our cost
structures from e-discovery experts. We have been able to obtain the help of three senior members
of the e-discovery community (two lawyers and an technical expert in technology-assisted review),
each of whom have extensive experience with actual e-discovery cases in their practice. We asked
each of them to think of an actual case theymay be familiar with, and to articulate the cost structure
that characterises that case. Through this process, we obtained three cost structures, which are
detailed in Table 5. Note that the values indicated by the three experts are in some cases markedly
different (e.g., there is a factor of 150 between the values of λLP indicated by two of the experts);
this need not be taken as evidence of disagreement among the experts for decisions on the same
task, since different experts were free to choose different legal cases to have in mind when arriving
at these estimates. Rather than trying to reconcile these cost structures in any way, we have thus
run three experiments, one for each of the cost structures, on the assumption that MINECORE
should be able to cater to different application needs.

4.4 Baselines

We are here proposing some baseline methods against which to compare MINECORE. Through-
out this article, we use the same vector representations for the documents, the same supervised
learning algorithm, and the same classifier outputs, for all the methods being compared. Each
method (be it MINECORE or a baseline method) assigns, for each test document d , a class in
C = {cP , cL, cW }.
Our baseline methods are (aside from the fully automated and fully manual solutions) mixed-

initiative, “human-in-the-loop” systems, i.e., their classification decisions are obtained via some
combination of manual annotation work and automatic classification. Using the cost structures
exemplified in Table 5, we can evaluate each system using the evaluation measure described in
Equation (7); that is, for each system, we compute themisclassification costKm (D), the annotation
costKa (D), and the overall cost Ko (D) = Km (D) + Ka (D) they incur. The best system is the one
with the lowest Ko (D) cost.
Fully Automated (FA). The first baseline we consider is the fully automated solution, as de-

scribed in Section 2.1; for this method the annotation costKa (D) is zero, so its costKo (D) defaults
to the misclassification cost Km (D), which is computed according to Equation (5).
Fully Manual (FM). The second baseline we consider is the fully manual solution, as described

in Section 2.2; for this method the misclassification cost Km (D) is zero (since we assume perfect

10Although this calibration method is generally credited to Platt [28], the idea of using a logistic regression model for

mapping the scores of a classifier into well calibrated probabilities was originally introduced in Reference [24].
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reviewers), so its cost Ko (D) defaults to the annotation cost for the full collection Ka (D), which
is computed according to Equation (6).
Uncertainty Ranking (UR). In UR, we first annotate for responsiveness the τr documents

whose Pr(cr |d ) is closest to 0.5 (i.e., the ones whose responsiveness is most uncertain). A document
is then deemed responsive if the reviewer has annotated it as such, or (for the documents that have
not been manually annotated for responsiveness) if Pr(cr |d ) > 0.5. We then annotate for privilege,
among the documents that have been deemed responsive, the τp documents whose Pr(cp |d ) is
closest to 0.5. A document is then deemed privileged if the reviewer has annotated it as such, or
(for the documents that have not been manually annotated for privilege) if Pr(cp |d ) > 0.5. This
baseline is similar to MINECORE in that the class assigned to a test document may result from the
reviewers’ manual annotation work, or from the automated classifiers, or from a combination of
them. However, neither annotation costs nor misclassification costs play a role in UR.
Relevance Ranking (RR). In RR, we first annotate for responsiveness the τr documents with

the highest Pr(cr |d ), and we then annotate for privilege, among the documents that the reviewers
have deemed responsive in the previous phase, the τp documents with the lowest Pr(cp |d ). Unlike
MINECORE and UR, RR assumes that only the documents that have been certified responsive and
nonprivileged by the reviewers are going to be produced (documents certified responsive and priv-
ileged by the reviewers are entered on the privilege log, while all other documents are withheld); as
a result, the two rankings (by Pr(cr |d ) and Pr(cp |d )) attempt to top-rank the documents that have
the highest chances of meeting the requirements (responsiveness and nonprivilege) for disclosure.

Active Learning via Uncertainty Sampling (ALvUS). In the design of MINECORE our focus
has been on cases in which, given the learning algorithm we have chosen, we have already built
the best classifier we can, and in such cases we would not expect further gains from active learn-
ing. In our experiments, however, we have simply trained on a fixed set of 23,149 documents, and
it is possible that active learning might indeed give further gains. This motivates our choice to in-
clude ALvUS and ALvRS (see below) as additional baselines. In ALvUS, an interactive process asks
the reviewer to annotate for responsiveness the b documents in D for which Pr(cr |d ) is closest to
0.5 (parameter b is known as the batch size); at this point, this set Dr of b documents is added to
the training set, the posterior probabilities Pr(cr |d ) of the documents d annotated as responsive
(respectively, nonresponsive) are set to 1 (respectively, 0), hr is retrained, and D/Dr is classified
for responsiveness again; this process is repeated (using the newly computed Pr(cr |d ) values) until
exactly τr documents have been annotated.11 After this, an identical process is used for privilege,
substituting hp and τp for hr and τr in the above. At the end, a document d ∈ D is assigned to cP
iff Pr(cr |d ) > 0.5 and Pr(cp |d ) ≤ 0.5; to cL iff Pr(cr |d ) > 0.5 and Pr(cp |d ) > 0.5; and to cW other-
wise. ALvUS is similar to MINECORE and UR, in that the class assigned to a test document may
result from the reviewers’ manual annotation work, or from the automated classifiers, or from a
combination of them. In the experiments reported in this article, we use b = 1, 000, which was
found to work well by Reference [6], since smaller values would be less computationally tractable.
Note that the comparison between MINECORE and ALvUS is only partially fair, since ALvUS is
muchmore expensive computationally, given that it requires 
τr /k� + 
τp/k� retraining operations
(unlike MINECORE, which requires none).12

11To bemore precise, in the last iteration fewer thanb documentsmay be annotated, tomake the total number of documents

annotated equal to τr . For example, if τr = 3, 267 and b = 1, 000, then 1,000 documents will be annotated in each of the

first three rounds, while in the final round only 267 documents will be annotated.
12To increase accuracy even further, in an operational situation one could integrate MINECORE and active learning, by

repeatedly (i) retraining hr (respectively, hp ) after b documents have been annotated, (ii) re-generating the Pr2 (cr |d )’s
(respectively, the Pr3 (cr |d )’s) via the newly trained classifier, and (iii) reranking the remaining documents.
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Active Learning via Relevance Sampling (ALvRS). A variant of the previous baseline is
obtained if the active learning process asks the reviewer to annotate for responsiveness the b
documents in D for which Pr(cr |d ) is highest (and the ones for which Pr(cp |d ) is lowest when the
reviewer annotates for privilege). The rest of the process is as in ALvUS; in particular, here too we
useb = 1, 000. At the end, a documentd ∈ D is assigned to cP iff it has beenmanually annotated as
responsive and nonprivileged; it is assigned to cL iff it has been manually annotated as responsive
and privileged; it is assigned to cW otherwise. Unlike ALvUS, ALvRS thus assumes that, unless a
document has been under the scrutiny of both the junior reviewer (for responsiveness) and the
senior reviewer (for privilege), it is withheld.
Among e-discovery researchers and practitioners, ALvRS is known as “continuous active learn-

ing” (CAL) [6, 7, 9]; ALvRS was originally introduced in [24], where it was indeed called “Rele-
vance Sampling.”13 The latter paper is also the work in which ALvUS was introduced first, under
the name of “Uncertainty Sampling.” Note also that both ALvUS and ALvRS as used here bear
similarities with relevance feedback (which is indeed a form of active learning), since the classi-
fiers they retrain only need to generalize to a finite set of examples (i.e., D), and these examples
are all available at training time. In other words, ALvUS and ALvRS here operate (like relevance
feedback) in a transductive (a.k.a. “finite population”) setting, unlike other instantiations of active
learning (included the ones originally discussed in Reference [24]), which are meant to operate in
the full-blown inductive setting.
Note that for every baseline system other than FA and FM, we compute the cost Ko (D) that

the baseline incurs when manually annotating exactly τr documents for responsiveness and, if
possible,14 τp documents for privilege, where τr and τp are the values used in the MINECORE
system. This policy may be biased in favor of MINECORE, since τr and τp are optimal settings
for MINECORE whereas other systems might have yielded lower overall costs with either more
or less manual reviewing. However, none of the baseline systems we test have an a priori way of
analytically setting the optimal number of documents to manually review. This means that our
comparisons are, if not to post-hoc optimal systems, at least to reasonable systems.

4.5 Experimental Protocol

The experimentation protocol we adopt is the following. As groundwork, we train our binary
classifiers via the chosen binary learner using the 23,149 training documents, and apply them
to the 199,328 test documents (the test set Te thus plays the role of our universe D). For each
document d ∈ Te , the classifier for class c generates a confidence score, from which we obtain a
posterior probability Pr(c |d ) via probability calibration.
At this point, we run each of the seven methods (MINECORE plus the six baseline methods) for

each of the cost structures (see Table 5) we have elicited from the experts. In particular, for the
risk minimization method, we first simulate the manual annotation process for responsiveness:
for all d ∈ D such that Eyry[Δ

or (d )] < 0, we set Pr2 (cr |d ) to 1 if d is responsive and to 0 if d is
nonresponsive. We then do the same for privilege: for all d ∈ D such that Eypy[Δ

op (d )] < 0, we
set Pr3 (cp |d ) to 1 if d is privileged and to 0 if d is nonprivileged. We then compute the total cost of

13CAL, as described in References [6, 7, 9], is actually a simpler variant of ALvRS, since it deals with one classification task

only (i.e., responsiveness), instead of the two cascaded tasks (i.e., responsiveness and privilege) that ALvRS deals with.
14In some cases a baseline system might deem responsive fewer than τ p documents, which means that fewer than τ p

documents (i.e., all the ones deemed responsive) would be annotated for privilege; in this case the comparison between

this baseline system and all other systems (including MINECORE) is still fair, though, since this system will incur a smaller

annotation cost (for privilege) than MINECORE.
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the process via Equation (7), which works out as

Ko (D) = Ka (D) + Km (D)

= τrλ
a
r + τpλ

a
p +

∑

i, j ∈{P,L,W }
λmij · |{d ∈ D|h3 (d ) = ci and y (d ) = c j }|. (21)

We simulate the manual annotation process in a similar way also for all the baseline methods.

4.6 Results

In this section, we present the results of testing MINECORE against the six baseline methods
presented in Section 4.4, on the 120 class pairs described at the end of Section 4.1; we have run
each such experiment for each of the three cost structures discussed in Section 4.3.
In Table 6, we exemplify, on a sample cost structure (CostStructure1), what the results look like.

The table reports, for each class pair, the class prevalences of cr and cp , the values of τr and τp that
MINECORE returns, theKo (D) value (expressed in thousands of US$) resulting fromMINECORE,
and, for each of the 6 baseline methods, the increase in Ko (D) value with respect to MINECORE
(a positive increase means that the baseline generates higher costs than MINECORE).
Table 6 shows that, for this cost structure, MINECORE is the least expensive of the seven meth-

ods for the 30 class pairs displayed; this actually happens for all 120 class pairs. An overall view of
the relative merits of the seven methods can be obtained by looking at the bottom row of the table,
which reports median values computed across the 120 class pairs (throughout this article, we look
at medians, rather than at averages, to reduce the impact of outliers). In terms of themedian values,
the second-best method is (surprisingly enough) the FAmethod, which is 29%more expensive than
MINECORE. Other methods are even more expensive, up to 235% more than MINECORE; among
these other methods one can note a slight advantage of the uncertainty-based methods (UR and
ALvUS) over the relevance-based ones (RR and ALvRS), while there seems to be no substantial
difference between the methods that are based on active learning (ALvUS and ALvRS) and the
ones that are not (UR and RR).
The values of τr range in the [809,18998] interval, corresponding to [0.41%,9.53%] of the to-

tal set of 199,328 documents; those of τp range instead in the [389,7942] interval, correspond-
ing to [0.20%,3.98%] of the total set. This shows two important facts. First, MINECORE sanc-
tions that only a small minority of the documents (max 9.53% of the total lot for responsiveness,
max 3.98% for privilege) should be manually reviewed; this is in line with what we would ex-
pect, given the cost structure. Second, MINECORE requires many fewer documents to be man-
ually annotated for privilege than for responsiveness; this is a consequence (a) of the fact that
many documents are ruled out from further consideration on responsiveness grounds alone, and
are not further checked for privilege; and (b) of the fact that manually reviewing for privilege is
more expensive, and thus more strongly discouraged by MINECORE, than manually reviewing for
responsiveness.
Figure 4 illustrates the same results, with the class pairs sorted in order of decreasing overall

cost for MINECORE. Three patterns are evident in that figure. First, the cost of the FM baseline is
quite high, varying in a narrow range in a manner that strictly depends on the prevalence of the
responsiveness class. Second, none of the baselines other than FM, while all systematically better
than FM, are systematically better or systematically worse than all the other ones, which is shown
by the fact that the relative plots keep intersecting each other. Third, MINECORE systematically
outperforms all others, often by a substantial margin.
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Table 6. Results Obtained by Using a Sample Cost Structure (Here: CostStructure1)

cr cp Pr(cr ) Pr(cp |cr ) τp τr
FA
Δ

FM
Δ

UR
Δ

RR
Δ

ALvUS
Δ

ALvRS
Δ

RM
Ko (D)

1 M12 M14 3% 1% 3,257 1,100 +13% +865% +22% +45% +28% +41% 23

2 M12 CCAT 3% 5% 1,738 1,997 +36% +533% +63% +68% +82% +65% 36

3 M12 M132 3% 7% 2,889 1,201 +38% +424% +57% +57% +51% +54% 43

4 M12 E21 3% 11% 2,048 2,063 +44% +353% +71% +68% +73% +66% 50

5 M12 M131 3% 18% 2,726 1,400 +30% +64% +39% +36% +41% +29% 139

6 M132 GPOL 3% 1% 2,254 1,227 +25% +859% +39% +59% +44% +54% 24

7 M132 CCAT 3% 2% 1,794 2,300 +26% +596% +58% +66% +51% +66% 33

8 M132 M12 3% 6% 2,360 1,828 +12% +588% +30% +45% +25% +42% 33

9 M132 M131 3% 7% 2,506 1,685 +29% +332% +49% +48% +47% +38% 53

10 M132 GCAT 3% 15% 2,258 1,152 +25% +592% +40% +48% +47% +46% 33

11 M131 CCAT 3% 1% 1,141 2,797 +34% +490% +71% +72% +65% +70% 39

12 M131 M132 3% 6% 1,709 1,528 +27% +365% +56% +44% +30% +40% 50

13 M131 E12 3% 7% 1,309 2,066 +36% +280% +55% +52% +69% +53% 61

14 M131 ECAT 3% 9% 822 3,334 +61% +291% +88% +90% +88% +83% 59

15 M131 M12 3% 15% 1,465 1,823 +34% +313% +44% +47% +63% +47% 56

16 E12 M11 3% 1% 8,371 437 +32% +458% +7% +14% +10% +12% 42

17 E12 GDIP 3% 3% 7,135 1,334 +22% +290% +22% +25% +21% +29% 60

18 E12 E212 3% 4% 7,135 1,336 +30% +323% +29% +36% +29% +35% 55

19 E12 M131 3% 7% 7,639 1,467 +35% +261% +42% +49% +58% +45% 64

20 E12 E21 3% 13% 5,589 1,769 +33% +210% +47% +49% +48% +52% 75

21 C21 C17 4% 1% 5,862 +18% +18% +254% +14% +19% +9% +13% 66

22 C21 C15 4% 3% 4,610 1,651 +11% +211% +16% +19% +13% +15% 75

23 C21 ECAT 4% 5% 3,084 2,184 +10% +180% +24% +24% +13% +23% 84

24 C21 C31 4% 18% 2,037 2,298 +15% +159% +29% +27% +43% +32% 91

25 C21 M141 4% 20% 7,052 389 +15% +162% +10% +12% +9% +10% 90

26 E212 GPOL 4% 2% 2,527 3,592 +3% +416% +35% +47% +27% +46% 46

27 E212 E12 4% 4% 2,357 1,410 +8% +543% +23% +30% +25% +32% 37

28 E212 M12 4% 8% 2,312 1,805 +31% +342% +47% +47% +60% +52% 53

29 E212 MCAT 4% 9% 2,059 3,171 +23% +297% +51% +53% +59% +50% 59

30 E212 C17 4% 19% 1,967 2,574 +11% +327% +34% +35% +48% +37% 55

... ... ... ... ... ... ... ... ... ... ... ... ... ...

Median values across 120 class pairs 4,781 3,610 +29% +221% +46% +53% +46% +52% 77

Columns 2 and 3 indicate the identifiers of the RCV1-v2 classes that play the role of cr and cp , respectively. MINECORE

is here shortened as “RM” (for “Risk Minimization”). RM Ko (D) denotes the cost incurred by MINECORE for a certain

class pair; for readability we indicate costs in thousands of US$, rounding them to the closest unit (e.g., $23,456 would

be indicated as 23). Δ denotes the percentage increase in cost that derives by adopting the method indicated instead of

MINECORE (e.g., +30% means that the cost of the method is 30% higher than that of MINECORE). Due to pagination

issues, only the first 30 class pairs are shown; a full table with data for all 120 class pairs × 3 cost structures is online

at https://github.com/minecore2018/tois_code.git. The last row represents median values across the 120 class pairs.

Table 7 shows a comparison among the results obtained for the different cost structures on a
representative class pair.15 It is immediately obvious that the cost structure has a lot of influence

15In this example responsiveness is simulated by RCV1-v2 class GPOL (“DomesticPolitics”) while privilege is simulated by

class CCAT (“Commercial/Industrial”); this class pair was chosen as representative, since it is the one for which the median

increase in overall cost (+47%) between MINECORE and a high-performing baseline (ALvUS) is obtained.
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Fig. 4. Overall costs with CostStructure1 for the 7 methods across the 120 class pairs, with the x axis sorted
by decreasing cost for MINECORE (here shortened as “RM”).

Table 7. Results Obtained on a Sample Class Pair (in this Case: Pair 97, with Class GPOL as cr
and Class CCAT as cp ) Using the Different Cost Structures of Table 5

τp τr FA FM UR RR ALvUS ALvRS RM

Ko Δ Ko Δ Ko Δ Ko Δ Ko Δ Ko Δ Ko

CostStructure1 6,169 6,885 177 +32% 273 +105% 207 +55% 215 +61% 196 +47% 212 +59% 93

CostStructure2 918 1189 57 +3% 273 +397% 63 +14% 64 +16% 57 +3% 63 +14% 55

CostStructure3 0 0 15 +0% 273 +1,714% 15 +0% 15 +0% 15 +0% 15 +0% 15

Ko denotes the cost incurred by the method for the entire dataset D while Δ denotes the percentage increase in cost

with respect to MINECORE (e.g., +30% means that the cost of the method is 30% higher than that of MINECORE). A

greyed-out cell with a value in boldface indicates the best method. For readability we indicate costs in thousands of

US$, rounding them to the closest unit; e.g., $272,456 would be indicated as 272. MINECORE is here shortened as “RM”

(for “risk minimization”).

(i) on how many documents get manually reviewed, both for responsiveness and for privilege,
(ii) on the total costs incurred by the various methods, and (iii) on the difference in cost between
these methods and MINECORE. The first first of those points has been previously noted in an
more restricted setting, focused only on privilege [26]. In general, CostStructure2 results in much
smaller numbers of manually reviewed documents than CostStructure1; this is because (see
Table 5) the misclassification costs are much smaller than in CostStructure1, which makes
manual annotation less cost-effective. CostStructure3 is also an interesting limiting case, in
that it results in τr = τp = 0; that is, MINECORE decrees that no document is worth manually
annotating, and that the decisions of the automatic classifiers should be used, which means that
in this case MINECORE coincides with FA. The reason for this behavior lies in the fact that the
misclassification costs in Λm are (relatively to the annotation costs in Λa ) very low, too low to
justify any amount of manual annotation. In general, if the costs in Λm are low and the costs in
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Λa are high, low values of τr and τp (sometimes as low as 0) will result, since manual annotation is
discouraged. Conversely, if the costs in Λm are high and the costs in Λa are low, high values of τr
and τp (sometimes as high as |D|) will result, and MINECORE will suggest manual annotation for
all documents in D. In general, the higher (respectively, lower) the ratio between the costs in Λm

and those in Λa , the closer to FM (respectively, FA) MINECORE is going to be performance-wise.
MINECORE is especially advantageous with respect to both baselines when the cost structure
justifies the notion that some (but not all) of the documents in D are worth annotating manually.

Figure 5 extends the comparison shown in Table 7 to the full set of class pairs. As can be seen, all
of the baselines generally incur substantially higher costs than MINECORE with CostStructure1;
this difference is instead far smaller for CostStructure2 (as noted above, there is no difference
between MINECORE and the other baselines—except FM—for CostStructure3).
Finally, Table 8 shows the median (across the 120 class pairs) overall cost obtained by each

method with each cost structure. For CostStructure2, MINECORE does better by this median mea-
sure than all of the baseline methods, albeit by smaller margins than are achieved for CostStruc-
ture1. For both of those two cost structures, the costs generated by each baseline method is statisti-
cally significantly higher according to a Wilcoxon signed rank test for paired samples over the 120
class pairs, at p < 0.01. Concerning CostStructure3, similar to what happened for the pair show-
cased in Table 7, MINECORE evaluates both τr and τp to 0 for all class pairs, making MINECORE
and all the other methods (aside from FM) coincide with FA.
Incidentally, one cannot help noticing how the FM fully manual baseline is, by a very wide

margin and according to all three cost structures, the worst of all systems. This is a further confir-
mation of a fact first noted in Reference [15], which reasserts that technology-assisted review is
nowadays unavoidable in e-discovery.

4.7 Efficiency Issues

We now discuss issues of computational cost. In Table 9, we report, for each cost structure, the
average computation times (in seconds) required by each method, where averages are computed
across all the class pairs. The figures do not include the times needed to index the documents,
train the original classifiers, and apply the classifiers to all the test documents, which are the same
for all methods and all cost structures (this is the reason why times for the FA method are 0). By
“computation time” we thus mean

(1) for the UR and RR, baselines: the time needed to generate the two rankings;
(2) for MINECORE (RM): the time needed to calibrate the probabilities + the time needed to

generate the two rankings;
(3) for the ALvUS and ALvRS baselines: the time needed to repeatedly (a) generate the two

rankings and (b) retrain the classifiers.

The probability calibration phase is taken into consideration for MINECORE but not for the base-
lines, since it is strictly needed for MINECORE but not for the baselines (in the baselines, while
we indeed use the calibrated probabilities, we might as well have used the original uncalibrated
scores, since for the baselines the generated rankings are the same in the two cases; this is not the
case for MINECORE).
Table 9 shows that the computational cost of MINECORE is roughly double than that of UR

and RR. The reason is that, for each document in D, MINECORE needs to compute Ey[Δ
or (d )]

(via Equation (13)) and Ey[Δ
op (d )] (via Equation (18)) and generate the two rankings, while UR

and RR only need to generate the two rankings. All in all, the increased computational cost is
tolerable (note that in a real e-discovery scenario, we would deal with just one class pair), given the
sizeable reduction in total US$ cost that the use of MINECORE brings about. Concerning ALvUS
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Fig. 5. Percentage increase (with respect to MINECORE) in the overall cost Ko (D) resulting from the six
baselinemethods for each of the 120 class pairs according to the three different cost structures. Pairs are listed
on the x axis by decreasing cost brought about byMINECORE. For better comparison all figures are displayed
across the range [−15%,+145%] on the y axis; in the FM figure (top right) this makes the CostStructure2 and
CostStructure3 curves, and most of the CostStructure1 curve, fall way off the ceiling.

and ALvRS, instead, we note that their computational cost is dramatically higher than that of
MINECORE, while (as seen in Section 4.6) bringing about qualitatively inferior results.

Table 9 also shows that the computational cost of UR, RR, and MINECORE are independent of
the cost structure; the reason is that the amount of computation that each of them performs does
not depend on the actual values of the unit costs.
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Table 8. Results Obtained by Using the Different Cost Structures of Table 5

FA FM UR RR ALvUS ALvRS RM

Ko (D) Δ Ko (D) Δ Ko (D) Δ Ko (D) Δ Ko (D) Δ Ko (D) Δ Ko (D)

CostStructure1 94 +29%† 248 +235%† 106 +47%† 107 +52%† 104 +47%† 108 +52%† 73

CostStructure2 24 +2%† 248 +893%† 26 +10%† 26 +11%† 25 +4%† 25 +7%† 24

CostStructure3 10 +0% 248 +2416%† 10 +0% 10 +0% 10 +0% 10 +0% 10

See Table 7 for the meaning of the various columns and notational conventions.

The results in a given row are the median of the 120 results obtained with the tested 120 class pairs. A greyed-out cell with

a value in boldface indicates the best method, while † indicates a statistically significant (p < 0.01) increase in overall

cost with respect to MINECORE (here shortened as “RM”), as determined by the Wilcoxon test discussed in this section.

Table 9. Average Computation Times (in Seconds) Per Class Pair for Each
Cost Structure and Each Method

FA FM UR RR ALvUS ALvRS RM

CostStructure1 0 0 11 10 774 750 19
CostStructure2 0 0 11 10 432 420 19
CostStructure3 0 0 11 10 11 10 19

While the values in Table 9 are averages (across class pairs), we should note that for eachmethod
in {UR, RR, MINECORE} the time is essentially the same for each class pair and each cost structure.
This is due to the fact that these methods consist of ranking D documents twice, irrespectively
of the class pair and cost structure involved. Instead, times can vary across class pairs and cost
structures quite a lot in ALvUS and ALvRS, because different class pairs and cost structures in
general give rise to different values of τr or τp , which in turn gives rise, for ALvUS and ALvRS, to
different numbers of retraining operations. In ALvUS andALvRS a sizeable part of the computation
is due to the retraining-and-reranking operations (one every b manually annotated documents—
see Section 4.4), which are interleaved with the reviewers’ work.
A further advantage of MINECORE over ALvUS and ALvRS is that all of its processing is in-

stead carried out offline, i.e., before the interaction with the reviewers start; this means that this
interaction can occur smoothly, not hampered by intermediate processing phases during which
the reviewers are effectively stalled.
All our experiments were run on a machine equipped with a 4-core processor Intel(R) Core(TM)

i5-4670 CPUwith 16GB of RAMunder RedHat Enterprise Linux 6. (One core only, with nomultiple
threading, was used though.)

5 DISCUSSION

5.1 Estimating Costs in Operational Conditions

When using the system in operational conditions, rather than in lab experiments like the ones
above, Km (D) (and, as a consequence, Ko (D)) cannot be computed precisely, since, even after the
entire process has ended, we do not know the true classes of some of the unlabeled documents
(the only documents whose true class we know are the ones that have been manually annotated

for both responsiveness and privilege). The best we can do is thus to compute estimates Ĉm (D)
and Ĉo (D).16

16Consistent with most mathematical literature, we use the caret symbol (ˆ) to indicate estimation.
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One possible method for computing these estimates is the following. To compute Ĉm (D) and
Ĉo (D), we need estimates (denoted as D̂i j ) of the contingency cell values Di j (for i, j ∈ {P ,L,W })
that result from the entire process. We start by computing estimates of the Di j values that result
from Phase 1. To compute them, we perform a k-fold cross-validation on the training setTr , so that
each element of Tr is classified by an automatic classifier, and can thus be assigned to one of the
cellsTri j of the contingency table. We then make the assumption that the training set and the test
set are independent and identically distributed.17 This allows us to compute amaximum-likelihood

estimate of Di j as D̂i j = Tri j · |Te |/|Tr |.18 By applying Equation (5), we obtain

Ĉo
1 (D) = Ĉm

1 (D) =
∑

i, j ∈{P,L,W }
λmij D̂i j ,

which represents the estimate of Ko (D) at the end of Phase 1.
Once annotation by responsiveness has started, every time a documentd is manually annotated,

wewould like to update the current estimate ofKo (D) by bringing to bear the reduction in cost that
annotating d has brought about. However, we do not know the true class of d , so we do not know
exactly which values D̂i j we should update. We must thus switch from costs Ĉo (D) to expected

costs (i.e., risks) E[Ĉo (D)]. We first initialize E[Ĉo (D)]← Ĉo
1 (D), after which we perform each

update as

E[Ĉo (D)]← E[Ĉo (D)] + R2 (d,h2 (d )) + λ
a
r − R1 (d,h1 (d )), (22)

where Rϕ (d,hϕ (d )) is as in Equation (10). In other words, we add to the current estimate the ex-
pected difference in risk that annotating the document has brought about (note that the expression

that gets added to E[Ĉo (D)] is exactly Ey[Δ
or (d )] as in Equation (12)). Equivalently, once annota-

tion by privilege has started, we perform each update as

E[Ĉo (D)]← E[Ĉo (D)] + R3 (d,h3 (d )) + λ
a
p − R2 (d,h2 (d )). (23)

At the end of Phase 3, E[Ĉo (D)] is our final estimate of the overall costs that MINECORE has
brought about, while Ĉo

1 (D) − E[Ĉo (D)] is our estimate of the reduction in overall costs that man-
ual annotation has brought about.

5.2 Generalizing MINECORE to Multi-Stage Review

MINECORE is easily extended to supporting multi-stage review for application scenarios different
from those of e-discovery. While we have described a process that supports just two stages of
annotation (for the two classes cr and cp , respectively) and three alternative actions to perform
(P ,L,W ), the framework can be easily extended to supporting n stages of annotation (for classes
c1, . . . , cn ) and k alternative actionsA1, . . . ,Ak , where (as in Equation (1)) each action is identified
by a Boolean combination of c1, . . . , cn and the k Boolean combinations form a partition of the
event space.

17This assumption is reasonable only if the training set is has been obtained via a random sampling of the set of documents

that need to be classified. If the training set has instead been obtained, say, via active learning, then this assumption is not

satisfied, because active learning chooses the documents to be manually annotated according to a policy that is anything

but random; see Reference [14] for alternatives to k-fold cross-validation suitable for active learning.
18As inmany other contexts, the assumption that the training set and the test set are independent and identically distributed

may not be satisfied in practice; if it is not, in our case this leads to imprecise estimates of the contingency cell counts.While

this may be suboptimal, there is practically nothing we can do about it, since we do not know the real values of these counts;

in other words, k-fold cross validation is our “best possible shot” at estimating them in the absence of foreknowledge. In

a controlled experiment, we could exactly measure how suboptimal these estimates are by computing costs using the true

values of the contingency cells.
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In this more general case the contingency table D and the cost matrix Λm of Table 2 become
k × k matrixes, and a cost structure Λ = (Λm ,Λa ) consists of the k × k cost matrix Λm plus a vec-
tor Λa = (λa1 , . . . , λ

a
n ) of n annotation costs, one for each class in {c1, . . . , cn }. Reformulating Equa-

tion (3) (defining the risk associatedwith choosing actionAj ford), Equations (5) and (6) (definining
misclassification cost and annotation cost), and Equation (10) (definining cost-sensitive classifica-
tion), to account for these changes, is straightforward.
In thismore general case Phase 1 consists of generatingn classifiersh1, . . . ,hn , and of using them

to generate calibrated posterior probabilities Pr(c1 |d ), . . . , Pr(cn |d ) for each unlabelled document
d . Following this the process consists of additional n phases (instead of the two we have needed
for the purposes of e-discovery); remembering what we observed in Section 3.4 concerning how
to best sequence these phases, we here assume that λa1 ≤ · · · ≤ λan . Phase (i + 1) (for i ∈ {1, . . . ,n})
consists in determining (via ranking) which of the unlabelled documents should be manually re-
viewed for ci and which should not, analogous to what we have done in Phases 2 and 3 in Section 3.
No equation among the ones described in Section 3 needs rewriting, since the above-mentioned
reformulation of Equations (3), (5), (6), and (10) is sufficient to reframe the entire framework in
this more general way.

5.3 MINECORE and the Legal Profession

MINECORE has several attributes that are novel from the perspective of the way the legal profes-
sion presently performs the e-discovery review process. Adoption of the risk minimization method
we have presented will thus turn on the ability of the profession to address the several issues that
we identify in this section.
Perhaps most basically, we have assumed that lawyers will be able to conceptualize unit anno-

tation costs and unit misclassification costs in comparable units. Although this has proven to be a
useful formalism, one important insight from the literature on behavioral economics is that people
often find it difficult to quantify uncertain costs using the same units in which they would express
costs that would certainly be incurred. Moreover, the behavioral economics literature contains nu-
merous examples of studies in which the models that we might infer from the choices that people
make are inherently inconsistent when viewed rationally [21]. We have assumed for the purposes
of our work that some model of costs and risks exists and can be formalized, but in practice the
process of designing such models may not be as simple as asking an attorney to assign values to
the elements in one of our cost structures. Research on alternative approaches for model elicitation
is beyond the scope of our present work, but if these methods are to be adopted there will be a
need for serious work on that question.
A second important observation is that we have assumed that both costs and risks accumulate

linearly. This is surely a reasonable approximation for annotation costs: training costs and fatigue
effects may introduce some nonlinearities, but expecting actual annotation costs to be asymptoti-
cally linear does seem reasonable. The same may not be true, however, for misclassification costs.
As one example of the potential complexity, with some exceptions single errors can and will be
forgiven, since the standard applied in the law is reasonableness, not perfection, but an excessive
error rate might be taken as evidence of inattention and thus stiffly penalized. It remains to be
seen whether lawyers can agree on linear models for both costs and risks; if not, MINECORE may
need to be extended to accommodate the specific types of nonlinearities that lawyers would wish
to model.
In an adversarial legal system, such as the one in the United States of America, lawyers must

nonetheless agree on some things. In current practice, for example, lawyers negotiate on questions
such as what technical approaches (e.g., manual query formulation, simple passive machine learn-
ing, or active learning—see Section 6) will be used. Our risk minimization framework will give
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lawyers more to discuss, since adopting our approach would mean that they would ultimately
need to agree on both the cost structure and the way in which error probabilities are estimated.
Finally, lawyers may even need to change their views on what it means for a decision to be

“right.” In MINECORE we define a decision to be right if and only if it minimizes the overall
risk. Because the cost structure may be highly skewed, there could well be cases in which risk
minimization would rationally select a decision that is less likely to be correct if the cost of making
such an error is low.19 Essentially, by quantifying what it means to be “wrong” we enter a world
in which it can be right to be wrong. That alone may be enough to keep the discussion between
the text classification and legal worlds going for some time.

6 RELATEDWORK

Predictive coding in technology-assisted review. The state-of-the-art in the application of pre-
dictive coding to technology-assisted review in e-discovery is reviewed in Reference [27], and has
been the subject of many recent studies [2, 3, 7, 8, 15, 30, 31, 38]. All of the work cited here (and the
vast majority of published work on predictive coding in TAR) address review for responsiveness,
and not review for privilege; the latter has been addressed only sporadically (and tentatively) up
to now [13, 36, 37].

Cormack and Grossman classify the predictive coding protocols used in TAR into three
classes [6]. In each of these classes (i) a “seed set” of documents (usually identified via keyword
search) is manually annotated for use as initial training data; (ii) this initial training set is expanded
into a more refined training set by selecting new documents and asking the reviewers to manually
annotate them; and (iii) the classifier trained on this expanded training set ranks the remaining
documents inD in terms of probability of responsiveness, so that human reviewers may annotate
them starting from the top of the list and identify as many responsive documents as possible. The
classes identified by Cormack and Grossman differ in terms of how the new documents of Step
(ii) are selected: (a) random selection in simple passive learning (SPL), (b) selection by uncertainty
(as in our ALvUS baseline) in simple active learning (SAL), and (c) selection by relevance (as in our
ALvRS baseline) in continuous active learning (CAL). We want to stress that our work is not con-
cerned with how Steps (i) and (ii) are accomplished, and instead redefines Step (iii), by (a) bringing
privilege (alongside responsiveness) into play, (b) bringing annotation costs and misclassification
costs into play as explicit variables of the model, and (c) assuming that also documents that have
not been manually annotated (by responsiveness, or by privilege, or both) can be produced to the
requesting party, provided that the estimated risk of doing so is low enough.
Multi-stage (text) classification. Other systems for two-stage (or multi-stage) classification

have been proposed, either for textual documents or for other items, but are substantially different
from MINECORE. In some cases, the rationale of performing classification in more than one stage
if to have cheap early-stage classifiers act as coarse filters, and then more expensive and more
efficient classifiers take the final decision on the documents that have passed the previous filters
[32]; here, the classes involved in the different stages are the same, unlike inMINECOREwhere the
two stages deal with two different classes (responsiveness and privilege). Yet a different example

19As an example, assume CostStructure1, and assume we know for certain that document d is responsive (e.g., because

it has been manually annotated as such); we thus need to decide whether d should be produced or logged. According

to CostStructure1 (see Table 5), producing when we should instead log is four times as expensive as logging when we

should instead produce (since λPL/λLP = 4). If Pr(cp |d ) = 0.30, then probabilistic considerations alone would tell us that

we should produce d (since Pr(cp |d ) = 0.30 < Pr(cp |d ) = 0.70); however, when we bring cost considerations in, we will

rationally decide to log d , since the risk involved in logging d is λLP Pr(cp |d ) = 150.00 US$×0.70 = 105.00 US$ while

the risk involved in producing d is λPL Pr(cp |d ) = 600.00 US$ ×0.30 = 180.00 US$. Given CostStructure1, only when

Pr(cp |d ) < 0.20 we will rationally opt for producing d .
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is hierarchical classification (see, e.g., References [23, 39]), where a decision is taken whether or
not to assign a fine-grained class (e.g., “Baseball”) only after a coarse-grained class (e.g., “Sports”)
has been assigned. MINECORE is different from all the systems above, e.g., because it is a mixed-
initiative (human and machine) system while they are not; because in MINECORE the second
stage (privilege) is carried out independently of the outcome of the 1st (responsiveness), unlike
in the systems above; because MINECORE uses cost-sensitivity while the systems above do not;
and because in the systems above there is no combination of the decisions taken in the different
stages, while there is in MINECORE.
Evaluating technology-assisted review in e-discovery. A number of papers in the field of

predictive coding for TAR do not use, as evaluation measures, cost-sensitive measures such as the
one in Equation (7), but exclusively use “effort curves” to plot recall as a function of the number
of training documents (see, e.g., References [6, 31]). While the number of training documents used
indeed brings cost into the picture (since annotating them has a cost), effort curves reflect the costs
of just a single review stage.
Cost-sensitive active learning. Some aspects of MINECORE are reminiscent of past efforts in

cost-sensitive active learning. The work closest in spirit to ours is Reference [22], where the cost
of manually annotating a document is (as in MINECORE) an explicit variable in a model that ranks
items for presentation to a human reviewer. However, the goal of Reference [22] is not prioritizing
the documents whose annotation would bring about the highest reduction in overall cost, but
annotating the documents that would prove most valuable when used as training examples for
retraining the classifier. In other words, the task we deal with is not generating new training data
that allow us to train a more accurate classifier, but reviewing a set of documents at the minimum
possible overall cost; this difference in goals shapes the difference between that technique and
MINECORE. Other works in cost-sensitive active learning (e.g., References [34, 35]) are even more
different from ours, since they focus onmodelling the fact that different types of itemsmay involve
different annotation costs, an issue that we do not address in MINECORE.
Minimizing costs in classification endeavors. Our focus is complementary to that of Refer-

ence [2], which addresses the problem of minimizing total annotation costs for a fully automated
classifier, including both annotation for training and for evaluation. Rather, we focus here on the
costs of correcting the results of automated classifiers—a process that the authors of Reference [2]
do not model. Unlike them, for the purposes of our work, we treat training costs as fixed.
Utility theory for technology-assisted review. This work applies some of the principles de-

scribed in Reference [5], which presents a utility-theoretic model for ranking automatically classi-
fied documents to optimize the work of human reviewers who annotate some of them. One major
difference is that Reference [5] is more theoretical in spirit, while the present work can be seen as
an application to an e-discovery context of some of the principles presented there. Another major
difference is that Reference [5] does not consider annotation cost, and focuses on misclassifica-
tion cost; as a result, the amount of documents that the reviewer annotates is a free variable of
their model, and the evaluation is carried out for different values of this variable. In this work,
instead, we also consider annotation cost, and we derive the optimal amount of documents that
the reviewer should annotate as a function of unit misclassification costs and annotation costs.
Yet another difference is that in Reference [5] the cost matrix emerges from the evaluation func-
tion (e.g., F1), which is given as an input to the problem, while in MINECORE it is the evaluation
function (Equation (7)) that emerges from the cost structure and is given as an input to the prob-
lem. Finally, we should note that, while Reference [5] discusses two different models (the “static”
and the “dynamic” model), we here discuss a single “static” model; this derives from the fact that
the evaluation function we use is (unlike the F1 measure used in Reference [5]) linear in its free
variables, and linearity makes the static and the dynamic models coincide.
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7 CONCLUSION

We have developed MINECORE, a framework for jointly minimizing the expected total cost of re-
view for responsiveness and privilege. This framework, which is based on utility theory and relies
on multi-stage cost-sensitive ranking by uncertainty, accounts for the fact that misclassification
costs are not defined individually at the level of the individual aspect (e.g., responsiveness only),
but rather at the global, two-stage level (i.e., responsiveness and privilege), so the two issues are
best addressed jointly.
Differently from other competing models (e.g., CAL), MINECORE assumes that a document

might be produced to the requesting party even if it has not been manually certified to be respon-
sive and nonprivileged. A “minimum risk principle” is adopted when deciding which course of
action (“Produce,” “Log,” “Withhold”) should be chosen for a document, so that the action that is
expected to bring about the smallest cost is chosen. Human annotation effort is directed towards
globally reducing this expected cost for the entire universe of documents to be searched, and doc-
uments are manually reviewed only insofar as the cost of reviewing them is expected to be offset
by the reduction in cost that reviewing them is expected to bring about. Indeed, MINECORE is
characterized by the analytical derivation of an optimality criterion, in the form of two thresholds
τr and τp that indicate when the reviewers should stop annotating. In other models (say, in active
learning models), the stopping criteria used are mainly heuristic (see Reference [31, Section 2c] for
a discussion of this point). What enables us to analytically derive these optimal thresholds is the
fact that we explicitly model both annotation costs and misclassification costs, which means that
an optimal threshold may be defined as the one that best trades off between the two.
Our conclusions are supported by substantial experimentation, wherein seven different methods

(MINECORE plus six baselines) were tested on a collection of nearly 200,000 documents, using 120
pairs of classes (playing the role of the responsive and the privileged classes, respectively) and
three different cost structures.
There are several ways in which MINECORE could be extended. One might consist of conduct-

ing experiments with types of classifiers (e.g., a transductive SVM [20]) that are (see also Sec-
tion 1) better suited to the finite nature of the universe of documents that a specific e-discovery
endeavor needs to address. This move might bring about better posterior probabilities, Pr1 (cr |d )
and Pr1 (cp |d ), which would likely result in higher cost-effectiveness. A second way forward might
consist of switching to a nonlinear cost model, since attorneys and the courts demand not per-
fection but rather reasonableness; models that forgive a few errors but impose steep penalties for
systematicmistake patternsmight better represent actual practice in e-discovery. A third extension
of this work might consist of relaxing two simplifying assumptions we have built into MINECORE,
i.e., (a) that human reviewers are infallible (i.e., they do not bring about anymisclassification costs),
and (b) that the costs of setting up automated classifiers can be ignored. MINECORE is, all in all,
a reasonable first approximation, since assumption (a) biases the evaluation in favor of manual
endeavors, while assumption (b) generates an opposite bias in favor of automatic tools; however,
a solution in which both simplifications are removed might provide a more accurate picture of the
benefits of our risk minimization model.
Finally, we should emphasize that e-discovery is not unique in using multiple stages of review

to balance multiple goals. Similar situations arise in other settings, such as when fostering
government transparency [4] or as when archivists seek to open previously restricted collections
for unrestricted use by researchers. Indeed, as our society generates ever increasing quantities
of digital content in which the banal is intermixed with the crucial, which in turn is intermixed
with the sensitive, techniques such as those explored in this work will assume increasing
importance.
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