
37

Funnelling: A New Ensemble Method for Heterogeneous

Transfer Learning and Its Application to Cross-Lingual

Text Classification

ANDREA ESULI, ALEJANDRO MOREO, and FABRIZIO SEBASTIANI, Consiglio Nazionale

delle Ricerche, Italy

Cross-lingual Text Classification (CLC) consists of automatically classifying, according to a common set C
of classes, documents each written in one of a set of languages L, and doing so more accurately than when
“naïvely” classifying each document via its corresponding language-specific classifier. To obtain an increase in
the classification accuracy for a given language, the system thus needs to also leverage the training examples
written in the other languages. We tackle “multilabel” CLC via funnelling, a new ensemble learning method
that we propose here. Funnelling consists of generating a two-tier classification system where all documents,
irrespective of language, are classified by the same (second-tier) classifier. For this classifier, all documents
are represented in a common, language-independent feature space consisting of the posterior probabilities
generated by first-tier, language-dependent classifiers. This allows the classification of all test documents, of
any language, to benefit from the information present in all training documents, of any language. We present
substantial experiments, run on publicly available multilingual text collections, in which funnelling is shown
to significantly outperform a number of state-of-the-art baselines. All code and datasets (in vector form) are
made publicly available.

CCS Concepts: • Information systems→ Clustering and classification; • Computing methodologies

→ Ensemble methods;

Additional Key Words and Phrases: Funnelling, transfer learning, heterogeneous transfer learning, cross-
lingual text classification

ACM Reference format:

Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. 2019. Funnelling: A New Ensemble Method for Het-
erogeneous Transfer Learning and Its Application to Cross-Lingual Text Classification. ACM Trans. Inf. Syst.

37, 3, Article 37 (May 2019), 30 pages.
https://doi.org/10.1145/3326065

The order in which the authors are listed is purely alphabetical; each author has given an equally important contribution
to this work.
The present work has been supported by the ARIADNEplus project, funded by the European Commission (Grant No.
823914) under the H2020 Programme INFRAIA-2018-1. The authors’ opinions do not necessarily reflect those of the Euro-
pean Commission.
Authors’ addresses: A. Esuli, A. Moreo, and F. Sebastiani, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio
Nazionale delle Ricerche, 56124, Pisa, Italy; emails: {andrea.esuli, alejandro.moreo, fabrizio.sebastiani}@isti.cnr.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
1046-8188/2019/05-ART37
https://doi.org/10.1145/3326065

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

https://doi.org/10.1145/3326065
https://doi.org/10.1145/3326065

37:2 A. Esuli et al.

1 INTRODUCTION

In Multilingual Text Classification (MLC) each document d is written in one of a finite set L =
{λ1, . . . , λ |L | } of languages, and the unlabelled documents need to be classified according to a clas-
sification scheme C = {c1, . . . , c |C | }, which is the same for all λi ∈ L. MLC can be trivially solved as
|L| independent text classification tasks; in this case, when MLC is solved via supervised learning,
the training examples for language λ′ have obviously no impact on the classifier for language λ′′.
This is suboptimal, since it is somehow intuitive that some cross-fertilization among the language-
specific classification tasks should be possible.
An important subtask of MLC that indeed tries to bring about this cross-fertilization is Cross-

Lingual Text Classification (CLC). In CLC set L is partitioned into a subset of source languages
Ls ⊂ L and a subset of target languages Lt = L/Ls ; the goal is to build a classifier hi for each
target language λi ∈ Lt despite the fact that a training setTri for λi might be too small, or might
not exist at all. CLC tries to accomplish this by leveraging the training data for the source languages
Ls , for each of which a nonempty training set of labelled documents is assumed available.
CLC is thus an instance of transfer learning [33, 49], i.e., is a task in which we attempt to reuse

information about a problem in a source domain for solving the same problem in a different, tar-
get domain. More specifically, CLC is an instance of heterogeneous transfer learning [8], i.e., is a
task in which transfer learning is performed across domains that are characterized by different
feature spaces. Techniques developed for CLC are especially useful when we need to perform text
classification for under-resourced languages, i.e., languages for which only a small number (if at
all) of training documents are available; in these cases, CLC techniques allow leveraging what is
available for the better-resourced languages (e.g., English).
When a language λi ∈ Lt is such that no training example exists for it, the task of CLC is to

generate a classifier for λi that could not be generated otherwise. This scenario is usually called
zero-shot cross-lingual classification (ZSCLC).1

Instead, when a language λi ∈ Lt is such that a setTri of training documents is indeed available
for it (which is the scenario we will be mostly concerned with in this article), so that a (monolin-
gual) classifier hi could in principle be generated for λi , the task of CLC is to generate an “en-
hanced” classifier h+i (i.e., a classifier more accurate than hi) by also leveraging the training exam-
ples in Ls . Note that, when training data are available for each λi ∈ L, each λi can alternatively
play the role of the source or of the target language, i.e., unlabelled data in any language can benefit
from the training data in any language.
In this article, we will focus on general multilabel CLC, i.e., the CLC case in which the number

of classes to which a document d belongs ranges in {0, . . . , |C|}; note that multilabel CLC sub-
sumes binary classification (which corresponds tomultilabel CLCwith |C| = 1).We propose a new,
learner-independent approach for multilabel CLC that relies on funnelling, a two-tier method for
training classifier ensembles for heterogeneous data (i.e., data that lie in different feature spaces),
which is being proposed here for the first time. In our approach a test document du written in
language λi is classified by h1i , one among |L| language-specific multilabel base classifiers, and the
output of this classifier (in the form of a vector of |C| posterior probabilities Pr(c |du)) is input to
a multilabel meta-classifier, which generates the final prediction for du using the latter vector as
du ’s representation.

1The terminology in the literature is, as in most fields of science, not entirely consistent; in particular, what we here call
ZSCLC is sometimes called CLC (see, e.g., References [30, 35]), and the scenario in which training data are available for
the target languages too is sometimes called polylingual TC (see, e.g., References [17, 31]). In this article, we have tried to
stick to the terminology that seems now the most widely adopted one.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:3

The base classifiers can actually be seen as mapping |L| different language-dependent fea-
ture spaces ϕ1

i (e.g., consisting of terms or other content features) into a common, language-
independent feature space ϕ2 (consisting of posterior probabilities). In other words, documents
written in different languages, that in the first tier lie in different feature spaces, in the second
tier are “funnelled” into a single feature space. One advantage of this fact is that, as will become
clear in Section 3, all training examples (irrespective of language) contribute to training the meta-
classifier. As a result, the classification of unlabelled documents written in any of the languages in
L benefits from all the training examples, written in any language of L, and thus delivers better
results. Another advantage of this approach to CLC is its complete generality, since funnelling does
not require the availability of multilingual dictionaries, machine translation services, or external
corpora (either parallel or comparable).
This article is structured as follows. After some discussion of related work (Section 2), in Sec-

tion 3 we describe our approach to multilabel CLC in detail; in particular, in Section 3.2, we take
a critical look at funnelling and at its relationships with stacked generalization [52], and we dis-
cuss what exactly one attempts to learn via funnelling. In Sections 4 and 5, we turn to describing
the substantive experimentation to which we subject our approach; in particular, we describe ex-
periments in multilabel CLC settings (Section 5.1), in monolingual settings and in binary settings
(Section 5.2), and in settings that aim to show how funnelling may help classification for under-
resourced languages (Sections 5.3 and 5.4). In this article, wemostly focus on the situation in which
some training data are indeed available also for each of the target languages; Section 6 is instead
devoted to discussing how funnelling can be adapted to the zero-shot case. Section 7 concludes,
pointing at possible avenues for future work.

2 RELATEDWORK

Initial work onCLC [2, 17] relied on standard bag-of-words representations and investigated differ-
ent preprocessing techniques with simple strategies for classification based on language-specific
feature spaces (giving rise to one classifier for each language) or a single juxtaposed feature space
(giving rise to one single classifier for the entire set of languages). Since then, more sophisticated
distributional semanticmodels (DSMs), such asCross-Lingual Latent Semantic Analysis (CLLSA [10])
and Polylingual Latent Dirichlet Allocation (PLDA [29]), have been extensively investigated. How-
ever, the improvement in accuracy brought about by models based on these latent representations
comes at a cost, since the availability of external parallel corpora (i.e., additional to the one used
for training and testing purposes) is typically required.
In the absence of external parallel data, one cross-lingual DSM that has recently proved worthy

(and that we use as a baseline in our experiments) is Lightweight Random Indexing (LRI [31]), the
multilingual extension of the Random Indexing (RI) method [39]. RI is a context-counting model
belonging to the family of random projection methods, and is considered a cheaper approximation
of LSA [38]. LRI is designed so that the orthogonality of the projection base is maximized, which
allows to preserve sparsity and maximize the contribution of the information conveyed by the
features shared across languages.
Other techniques (e.g., Reference [13]), to solve the multilingual classification problem, rely on

the availability of external multilingual knowledge resources, such as dictionaries or thesauri. One
of the best-known such approaches (which we will also use as a baseline in our experiments) is
Cross-Lingual Explicit Semantic Analysis (CLESA [42, 43]). In the original monolingual version of
this technique a document is represented by a vector of similarity values, where each such value
represents the similarity between the document and a predefined reference text [15]. In CLESA,
different language-specific versions of the same text are considered as reference texts, so that
documents written in different languages can be effectively represented in the same feature space.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:4 A. Esuli et al.

In a similar vein, Kernel Canonical Correlation Analysis (KCCA) [21], the kernelized version of
CCA [23], has also been applied to cross-lingual contexts. In essence, CCA aims at maximizing the
correlations among sets of variables via linear projections onto a shared space. In its application
to cross-lingual classification, KCCA (which we will also use as a baseline in our experiments)
treats language-specific views of aligned articles as different sets of variables to correlate. The
projections that maximize the correlations among language-specific aligned articles are applied to
the training documents to create a classifier.
Another method that requires external multilingual resources (specifically: a word translation

oracle) isCross-Lingual Structural Correspondence Learning (CL-SCL [35]). CL-SCL relies on solving
auxiliary prediction problems, which consist in discovering hidden correlations between terms in
a language. This is achieved by binary classifiers trained to predict the presence of highly discrimi-
native terms (“pivots”) given the other terms in the document. The cross-lingual aspect is addressed
by imposing that pivot terms are aligned (i.e., translations of each other) across languages, which
requires a word translation oracle. A stronger, more recent variant of CL-SCL (which we also com-
pare against in our experiments) is Distributional Correspondence Indexing (DCI [30]). DCI derives
term representations in a vector space common to all languages where each dimension reflects its
distributional correspondence (as quantified by a “distributional correspondence function”) to a
pivot.
Machine Translation (MT) represents an appealing tool to solve CLC, and several CLC methods

are indeed based on the use of MT services [36, 51]. However, the drawback of these methods is
reduced generality, since it is not always the case that quality MT tools are both (a) available for
the required language combinations, and (b) free to use.
Approaches to CLC based on deep learning focus on defining representations based onword em-

beddings that capture the semantic regularities in language while at the same time being aligned
across languages. To produce aligned representations, though, deep learning approaches typically
require the availability of external parallel corpora [19, 24], bi-lingual dictionaries [27], bi-lingual
lexicons [12], or machine translation tools [1]. Recently, Conneau et al. [7] proposed a method to
align monolingual word embedding spaces (as those produced by, e.g., Word2Vec [28]) from dif-
ferent languages without requiring parallel data. To this aim, [7] proposed an adversarial training
process in which a generator (in charge of mapping the source embeddings onto the target space)
is trained to fool a discriminator from distinguishing the provenance of the embeddings, i.e., from
understanding whether the embeddings it receives as input come from the (transformed) source
or from the target space. After that, the mapping is refined by means of unsupervised techniques.
Despite operating without parallel resources, Reference [7] obtained state-of-the-art multilingual
mappings, which they later made publicly available2 and which we use as a further baseline in
our experiments of Section 4. We refer the interested reader to Reference [37] for a comprehensive
survey on the most important techniques for generating multilingual embeddings and to Refer-
ence [48] for an empirical comparison of different such techniques on several cross-lingual tasks.

3 SOLVING CROSS-LINGUAL TEXT CLASSIFICATION VIA FUNNELLING

We now describe funnelling and its application to multilabel CLC. Let L = {λ1, . . . , λ |L | } be our
finite set of languages, and let C = {c1, . . . , c |C | } be our finite classification scheme. Let d indi-
cate a generic document, dl a labelled (training) document, and du an unlabelled (test) document.
We assume the existence of |L| nonempty training sets {Tr1, . . . ,Tr |L | } of documents, where all
documents dl ∈ Tri are written in language λi and are labelled according to C (i.e., the set C of
classes is the same for all training sets). We do not make any assumption on the relative size and

2https://github.com/facebookresearch/MUSE.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

https://github.com/facebookresearch/MUSE

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:5

composition of the different training sets; we thus allow different training sets to consist of dif-
ferent numbers of documents, and we do not assume the union of the training sets to be either a
“parallel” dataset (i.e., consisting of translation-equivalent versions of the same documents) or a
“comparable” one (i.e., consisting of documents dealing with the same events/topics although in
different languages).
The first step of the training process consists of training |L| independent base classifiers

h11, . . . ,h
1
|L | from the respective training sets (throughout this article, the “1” superscript will in-

dicate the first tier of the architecture, which consists of the base classifiers). To do this, for each
training document dl ∈ Tri , we generate a vectorial representation ϕ1

i (dl) via bag-of-words or any
other standard content-based representationmodel; we use all the resulting vectors to trainh1i , and
repeat the process for all the Tri ’s. Quite obviously, the different base classifiers will operate in
different feature spaces (for a detailed discussion of this point see the last paragraph of Section 4.3).
We do not make any assumption concerning (a) the model used for generating the vectorial

representations ϕ1
i (d) and (b) the supervised learning algorithm used to train the base classifiers;

it is in principle possible to use different representation models and different supervised learning
algorithms for the different languages. Actually, the only assumption we make is that each trained
base classifier h1i returns, for each document du written in language λi and for each class c , a
classification score h1i (du , c) ∈ R, i.e., a numerical value representing the confidence that h1i has in
the fact that du belongs to c .
The second step consists of generating, for each document dl ∈ Tri and for each training set

Tri , a vectorial representation ϕ2 (dl) that will be used for training the meta-classifier. To do this,
for each document dl ∈ Tri , we first generate a vector

S (dl) = (h1ix (dl , c1), . . . ,h
1
ix (dl , c |C |)) (1)

of |C| classification scores, one per class, via k-fold cross-validation on Tri . In other words,
we split Tri into k subsets Tri1, . . . ,Trik of approximately equal size, train a classifier h1ix (us-
ing ϕ1

i (d)-style vectorial representations for the training documents) using the training data in⋃
y∈{1, ... ,k },y�x Triy , use this classifier to generate vectors S (dl) of classification scores for all

dl ∈ Trix , and repeat the process for all 1 ≤ x ≤ k . The reason why we use k-fold cross-validation
is that we want the classification scores which vector S (dl) is composed of, to be generated by
classifiers trained on data that do not contain dl itself.
All training documents, irrespective of the language they are written in, thus give rise to (dense)

vectors S (dl) of classification scores, and these vectors are all in the same vector space. In other
words, shouldwe view a documentdl as represented by vector S (dl), all documentswould be repre-
sented in the same feature space, i.e., the space of base classifier scores for classesC = {c1, . . . , c |C | }.
We could thus in principle use the set {S (dl) | dl ∈ ⋃ |L |i=1 Tri } as a large unified training set for
training a meta-classifier for C. This is indeed what we are going to do, but before doing this, we
transform all vectors S (dl) of classification scores into vectors of |C| posterior probabilities,

ϕ2 (dl) = (Pr(c1 |dl), . . . , Pr(c |C | |dl))
= (fix (h

1
ix (dl , c1)), . . . , fix (h

1
ix (dl , c |C |))),

(2)

where Pr(c j |dl) represents the probability that the originating base classifier attributes to the fact
that dl belongs to c j , and where fix is a mapping to be discussed shortly. Note that the Pr(c j |dl)’s
are just subjective estimates generated by the classifiers, and are not probabilities in any “objective”
sense (whatever this might mean).
The rationale for not using the original classification scores h1ix (dl , c j) as features is that vectors

of classification scores coming from different classifiers are not comparable with each other (see

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:6 A. Esuli et al.

[4, Section 7.1.3] for a discussion), and it would thus be unsuitable to use them together as feature
vectors in the same training set. The task of finding a function fix that maps classification scores
into posterior probabilities while at the same time obtaining “well calibrated” (i.e., good) poste-
rior probabilities, is referred to as probability calibration,3 and several methods for performing
it are known from the literature (see, e.g., References [34, 53]). We perform probability calibra-
tion independently for each of the |L| training sets and each of the k folds (since each of these
|L| × k settings yields a different classifier), thus resulting in |L| × k different calibration functions
f11, . . . , f |L |k .
The net result is that all the vectors in {ϕ2 (dl) |dl ∈ ⋃ |L |i=1 Tri } are now comparable, and can thus

be safely used for training the meta-classifierh2. Here, we do not make any assumption concerning
the learning algorithm used to train h2, the only requirement being that it needs to accept non-
binary vectorial representations as input. In particular, it is in principle possible to train our meta-
classifier via a learning algorithm different from the one used to train the base classifiers.
As a final step of the learning process, we perform probability calibration for the base classi-

fiers h11, . . . ,h
1
|L | trained in the first step, thus giving rise to additional |L| calibration functions

f1, . . . , f |L | .
The classification process follows the steps already outlined in Section 1. An unlabelled doc-

ument du written in language λi ∈ L is classified by its corresponding language-specific base
classifier h1i . The resulting vector of classification scores S (du) is mapped into a vector ϕ2 (du)
of posterior probabilities by the function fi obtained via probability calibration in the last step of
the training process. Vector ϕ2 (du) is fed to classifier h2, which generates |C| binary classification
decisions h2 (du , c1), . . . , h2 (du , c |C |).

We call our method Fun(kfcv)—with kfcv standing for “k-Fold Cross-Validation”—to distin-
guish it from a variant to be discussed in Section 3.1.

3.1 Two Variants of Funnelling

One problem with Fun(kfcv) is that the representations ϕ2 (dl) of the labelled documents used to
train themeta-classifierh2 may notmatchwell (i.e., faithfully represent) the representationsϕ2 (du)
of the unlabelled documents that will be fed to h2, and this would contradict the basic assumption
of supervised learning. In fact (assuming for simplicity that both dl and du are written in the
same language λi), the posterior probabilities of which ϕ2 (du) consists of have been generated
by classifier h1i , which has been trained on the entire set Tri , while the posterior probabilities of
whichϕ2 (dl) consists of, have been generated by one of the classifiersh1ix trained during the k-fold

cross-validation process, which has been trained on a subset of Tri of cardinality
k−1
k
|Tri |.

In other words, the base classifier h1i that classifies the unlabelled documents has receivedmore

training than the base classifiers h1ix that classified the training data; this difference may be espe-
cially substantial for low-frequency classes, where decreasing the size of the training set some-
times means depleting an already tiny set of positive training examples. As a result, the posterior
probabilities Pr(c j |du) for the unlabelled documents tend to be different (actually: higher-quality)

3Posterior probabilities Pr(c |d) are said to be well calibrated when lim|S |→∞ |{d∈c | Pr(c |d)=x }||{d∈S | Pr(c |d)=x }| = x [9]. Intuitively, this

property implies that, as the size of the sample S goes to infinity, e.g., 90% of the documents d ∈ S such that Pr(c |d) = 0.9
belong to class c . Some learning algorithms (e.g., AdaBoost, SVMs) generate classifiers that return confidence scores that are
not probabilities, since these scores do not range on [0,1]; in this case, a calibration phase is needed to convert these scores
into well calibrated probabilities. Other learning algorithms (e.g., Naïve Bayes) generate classifiers that output probabilities
that are not well calibrated; in this case too, a calibration phase is necessary to obtain well calibrated probabilities. Yet
other learning algorithms (e.g., logistic regression) are known to generate classifiers that already return well calibrated
probabilities; in these cases no separate calibration phase is necessary.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:7

than the corresponding posterior probabilities Pr(c j |dl) for the training documents. Because of
this mismatch, the meta-classifier h2 may perform suboptimally.
To minimize this mismatch one could arbitrarily increase the number k of folds, maybe even

using leave-one-out validation (i.e., k-fold cross-validation with k = |Tri |). However, this solution
is computationally impractical, since a high value of k implies not only a high number of train-
ing rounds but also a high number of probability calibration rounds (since, as already observed,
calibration needs to be done independently for each trained classifier), which is expensive, since
calibration usually entails extensive search in a space of parameters.
An alternative, radically simpler solution might consist in doing away with k-fold cross-

validation. In this solution (that we will call Fun(tat), where tat stands for “Train and Test”),
Equations (1) and (2) would be replaced by

S (dl) = (h1i (dl , c1), . . . ,h
1
i (dl , c |C |)), (3)

ϕ2 (dl) = (Pr(c1 |dl), . . . , Pr(c |C | |dl)) (4)

= (fi (h
1
i (dl , c1)), . . . , fi (h

1
i (dl , c |C |))) (5)

i.e., the vectors of |C| scores S (dl) and the vectors ϕ2 (dl) of |C| posterior probabilities would be
generated directly by the classifiers h1i trained on the entire training set Tri (with the help of the
calibration functions fi discussed towards the end of the previous section). Note that Fun(tat)
entails just |L| training and calibrations rounds, while Fun(kfcv) entails |L| × (k + 1).
Fun(tat) is not exempt from problems either, and actually suffers from the opposite drawback

with respect to Fun(kfcv). Here again, the representations ϕ2 (dl) of the labelled documents used
to train the meta-classifier may not match well the representations ϕ2 (du) of the unlabelled doc-
uments, for the simple reason that classifier h1i classifies (to generate the representations ϕ2 (dl)
to be used for training the meta-classifier) the very same training examples dl it has been trained
on. As a result, the posterior probabilities Pr(c j |du) for the unlabelled documents tend to be lower-
quality (hence different) than the corresponding posterior probabilities Pr(c j |dl) for the training
documents, since documents du have not been seen during training.
The two variants have thus opposite pros and cons; as a result, in our experiments, we will

test both of them, side by side. Both variants are collectively described in pseudocode form as
Algorithm 1, where the if command of Line 4 determines which of the two variants is executed.

3.2 What Does Funnelling Learn, Exactly?

Funnelling is reminiscent of the stacked generalization (a.k.a., “stacking”) method for ensemble
learning [52]. Let us discuss their commonalities and differences.
Common to stacking and funnelling is the presence of an ensemble ofn base classifiers, typically

trained on “traditional” vectorial representations, and the presence of a single meta-classifier that
operates on vectors of base-classifier outputs. Common to stacking and Fun(kfcv) is also the use
of k-fold cross-validation to generate the vectors of base-classifier outputs that are used to train
the meta-classifier. (Variants of stacking in which k-fold cross-validation is not used, and thus akin
to Fun(tat), also exist [40].)
However, a key difference between the two methods is that stacking (like other ensemble meth-

ods such as bagging [5] and boosting [14]) deals with (“homogeneous”) scenarios in which all
training documents can in principle be represented in the same feature space and can thus concur
to training the same classifier; in turn, this classifier can be used for classifying all the unlabelled
documents. In stacking, the base classifiers sometimes differ in terms of the learning algorithm
used to train them [40, 46], or in terms of the subsets of the training set which are used for train-
ing them [6]. In other words, in these scenarios setting up an ensemble is a choice, and not a

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:8 A. Esuli et al.

necessity. It is instead a necessity in the (“heterogeneous”) scenarios that funnelling deals with,
where labelled documents of different types (in our case: languages) could otherwise not concur
in training the same classifier (since they lie in different feature spaces), and where unlabelled
documents could not (for analogous reasons) be classified by the same classifier.

ALGORITHM 1: Funnelling for multilabel CLC; the if command of Line 4 chooses which of Fun(kfcv)

and Fun(tat) is executed.

Input: • Sets {T r1, . . . , T r |L| } of training documents written in languages L = {λ1, . . . , λ |L| }, all
labelled according to sets of classes C = {c1, . . . , c |C| };

• Sets {T e1, . . . , T e |L| } of unlabelled documents written in languages L = {λ1, . . . , λ |L| }, all to be
labelled according to sets of classes C = {c1, . . . , c |C| };

• Flag Variant, with values in {Fun(kfcv), Fun(tat)}
Output: • first-tier language-specific classifiers h1

1, . . . , h
1
|L| ;

• second-tier language-independent classifier h2 ;
• Labels for all documents in {T e1, . . . , T e |L| };

/* Training phase */

1 for λi ∈ L do

/* Train first-tier classifiers and find a calibration function for them */

2 Train classifier h1
i from T ri ;

3 Compute calibration function fi via chosen calibration method;

/* Generate vectors of posterior probabilities for training meta-classifiers */

4 if Variant=“Fun(kfcv)” then

/* Use the Fun(kfcv) variant of the algorithm */

5 Split T ri into k folds {T ri1, . . . , T rik };
6 for 1 ≤ x ≤ k do

7 Train classifier h1
ix from

⋃
y∈{1, . . . ,k },y�x T riy ;

8 Compute calibration function fix via chosen calibration method;

9 for dl ∈ T rix do

/* Compute vector of calibrated posterior probabilities */

10 ϕ2 (dl) ← (fix (h
1
ix (dl , c1)), . . . , fix (h

1
ix (dl , c |C|))) ;

11 end

12 end

13 else

/* Use the Fun(tat) variant of the algorithm */

14 for dl ∈ T ri do
/* Compute vector of calibrated posterior probabilities */

15 ϕ2 (dl) ← (fi (h
1
i (dl , c1)), . . . , fi (h

1
i (dl , c |C|))) ;

16 end

17 end

18 end

19 Train classifier h2 from all vectors ϕ2 (dl);

/* Classification phase */

20 for λi ∈ L do

21 for du ∈ T ei do
/* Compute vector of calibrated posterior probabilities */

22 ϕ2 (du) ← (fi (h
1
i (du, c1)), . . . , fi (h

1
i (du, c |C|))) ;

/* Invoke meta-classifier */

23 Compute h2 (du, c1), . . . , h
2 (du, c |C|) from ϕ2 (du).

24 end

25 end

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:9

Fig. 1. Architectures of a classifier system based on funnelling (left) and of one based on stacking (right).

Black diamonds represent individual classifiers, dark thin coloured rectangles represent individual vectors,

while larger coloured rectangles that contain them represent sets of vectors; national flags represent the

different languages on which language-specific classifiers operate. The fact that, in funnelling, the larger

coloured rectangles at the top have different widths indicates that the sets of vectors they represent lie in

different feature spaces, which may have different dimensionalities (this is usually not the case in stacking);

the fact that they have different heights indicates that the sets of vectors they represent may come in differ-

ent sizes (this is usually not the case in stacking either); above all, the fact that they are labelled by different

national flags indicates that the sets of vectors they represent lie in different feature spaces.

The consequence is that, while in stacking all base classifiers classify the test document, in
funnelling only one base classifier does this.4 In turn, this means that in stacked generalization
the length of the vectors on which the meta-classifier operates is n · |C| (with n the number of
base classifiers), while it is just |C| in funnelling. In stacking, n different scores (one for each base
classifier) for the same (du , c) test pair are thus received by the meta-classifier, who then needs to
combine them to reach a final decision. As noted in Reference [11], stacking is indeed a method
for learning to combine the n scores returned by a set of n base classifiers for the same (du , c)
test pair. While in many classifier ensembles a static combination rule—e.g., weighted voting—is
used to combine the outputs of the individual base classifiers, in stacking this combination rule is
learned from data. By contrast, there is no combination of different outputs in funnelling, since a
document is always classified by only one base classifier. Graphical depictions of the architectures
of funnelling and stacking are given in Figure 1.
So, if the meta-classifier of an ensemble built via funnelling does not learn to combine different

scores for the same (du , c) pair, what does it learn exactly?
It certainly learns to exploit the stochastic dependencies between classes that exist in multilabel

settings [18, 32, 47], which is not possible when (as customarily done) a multilabel classification

4Kuncheva [25, p. 106] observes that “It is accepted now that there are two main strategies in combining classifiers: fusion
and selection. In classifier fusion, each ensemble member is supposed to have knowledge of the whole feature space. In
classifier selection, each ensemble member is supposed to know well a part of the feature space and be responsible for
objects in this part.” Funnelling is thus an instance of the “classifier selection” strategy for creating an ensemble.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:10 A. Esuli et al.

task is solved as |C| independent binary classification problems. In fact, for an unlabelled document
du the meta-classifier receives |C| inputs from the base classifier, which has classified du , and
returns |C| outputs, which means that the input for class c ′ has a potential impact on the output
for class c ′′, for every choice of c ′ and c ′′. For instance, the fact that for du the posterior probability
for class Skiing is high might bring additional evidence that du belongs to class Snowboarding;
this could be the result of several training documents labelled by Snowboarding having, in their
ϕ2 (d) vectors, a high value for class Skiing.

However, learning to exploit the stochastic dependencies between different classes is certainly
not the primary motivation behind funnelling. The primary motivation is instead learning from
heterogeneous data, i.e., data that come in n different, incomparable varieties, and that because of
the differences among these varieties requiren completely different feature spaces to accommodate
them. When all these diverse data need to be classified, despite their diversity, according to a com-
mon classification scheme C, funnelling can be used to set up a single classifier (themeta-classifier)
that handles them all. Funnelling can be seen as mapping n different, incomparable feature spaces
into a common, more abstract feature space in which all differences among the original n feature
spaces have been factored out. As a result, the meta-classifier can be trained from the union of the
n training sets, which means that all training examples, irrespective of their provenance, concur
to the common goal of classifying all the unlabelled examples, irrespective of the provenance of
each of these.

4 EXPERIMENTAL SETTING

4.1 Datasets

We perform our experiments on two publicly available datasets, RCV1/RCV2 (a comparable cor-
pus), and JRC-Acquis (a parallel corpus).5

4.1.1 RCV1/RCV2. RCV1-v2 is a publicly available collection consisting of the 804,414 English
news stories generated by Reuters from 20 August 1996 to 19 August 1997 [26]. RCV2 is instead
a multilingual collection, containing over 487,000 news stories in one of thirteen languages
other than English (Dutch, French, German, Chinese, Japanese, Russian, Portuguese, Spanish,
LatinoAmerican Spanish, Italian, Danish, Norwegian, Swedish), and generated by Reuters in
the same timeframe. The documents of both collections are classified according to the same
hierarchically organized set of 103 classes. The union of RCV1-v2 and RCV2 (hereafter referred to
as RCV1/RCV2) is a corpus comparable at topic level, as news stories are not direct translations of
each other but simply discuss the same or related events in different languages. Since the corpus
is not parallel, a training document for a given language does not have, in general, a counterpart
in the other languages.
In our RCV1/RCV2 experiments, we restrict our attention to the 9 languages (English, Italian,

Spanish, French, German, Swedish, Danish, Portuguese, and Dutch) for which stop word removal
and lemmatization are supported in NLTK.6 To give equal treatment to all these languages, from
RCV1/RCV2, we randomly select 1,000 training and 1,000 test news stories for each language (with
the sole exception of Dutch, for which only 1,794 documents are available, and for which we thus
select 1,000 documents for training and 794 for test); this allows us to run our experiments in
controlled experimental conditions, i.e., to minimize the possibility that the effects we observe

5All the information required to replicate the experiments, e.g., IDs of the selected documents, assigned labels, code, and
so on, is made available at https://github.com/AlexMoreo/funnelling.
6http://www.nltk.org/.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

https://github.com/AlexMoreo/funnelling
http://www.nltk.org/

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:11

across languages are due to different amounts of training data for the different languages tested
upon.7

Following this selection, we limit our consideration to the 73 classes (out of 103) that end up
having at least one positive training example, in any of the 9 languages. As a result, the average
number of classes per document is 3.21, ranging from a minimum of 1 to a maximum of 13; the
number of positive examples per class ranges from a minimum of 1 to a maximum of 3,913. The
average number of distinct features (i.e., word lemmas) per language is 4,176, with a total of 26,977
distinct terms across all languages, of which 10,613 appear in two or more languages.
Since the selection of 1,000 training and 1,000 test documents for each language introduces a

random factor, we repeat the entire process 10 times, each time with a different random selection;
all the RCV1/RCV2 results we report in this article are thus averages across these 10 random
trials.

4.1.2 JRC-Acquis. JRC-Acquis (version 3.0) is a collection of parallel legislative texts of Euro-
pean Union law written between the 1950s and 2006 [45]. JRC-Acquis is publicly available for
research purposes, and covers 22 official European languages. The corpus is parallel and aligned at
the sentence level, i.e., of each document there are 22 language-specific versions that are sentence-
by-sentence translations of each other. The dataset is labelled according to the EuroVoc thesaurus,
which consists of a hierarchy of more than 6,000 classes; for our experiments, we select the 300
most frequent ones.
We restrict our attention to the 11 languages (the same 9 languages of RCV1/RCV2 plus Finnish

and Hungarian) for which stop word removal and lemmatization are supported in NLTK (we do not
consider Romanian due to incompatibilities found in the source files).
For inclusion in the training set, we take all documents written in the [1950,2005] interval and

randomly select, for each of them, one of the 11 language-specific versions. The rationale of this
policy is to avoid the presence of translation-equivalent content in the training set; this will enable
us to measure the contribution of training information coming from different languages in a more
realistic setting.
For the test set, we instead take all documents written in 2006 and retain all their 11 language-

specific versions. The rationale behind this policy is to allow a perfectly fair evaluation across
languages, since each of the 11 languages is thus evaluated on exactly the same content. This
process results in 12,687 training documents (between 1,112 and 1,198 documents per language)
and 46,662 test documents (exactly 4,242 documents per language). The average number of classes
per document is 3.31, ranging from a minimum of 1 to a maximum of 18; the number of positive
examples per class ranges from a minimum of 55 to a maximum of 1,155. There is an average of
9,909 distinct word lemmas per language, a total of 81,458 distinct terms across all languages, of
which 27,550 appear in more than one language.
As in RCV1/RCV2, we repeat the process of selecting training data 10 times, each time with a

different random selection (this means that, in each of these 10 random trials, a different language-
specific version of the same document is selected); for JRC-Acquis too, all the results we report in
this article are thus averages across these 10 random trials.

7The above selection protocol allows us tominimize the effects due to the amounts of training data available for the different
languages, but not to eliminate them. The reason is that different training examples may have different number of classes
associated to them, so one example that has more of them contributes more training information than an example that has
fewer of them. This is a factor that is almost impossible to eliminate from a multilabel dataset.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:12 A. Esuli et al.

4.2 Evaluation Measures

As the evaluation measures for binary classification, we use both the “classic” F1 and the more
recently proposed K [41]. These two functions are defined as

F1 =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

2TP

2TP + FP + FN
if TP + FP + FN > 0

1 if TP = FP = FN = 0,

(6)

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

TP

TP + FN
+

TN

TN + FP
− 1 if TP + FN > 0 and TN + FP > 0

2
TN

TN + FP
− 1 if TP + FN = 0

2
TP

TP + FN
− 1 if TN + FP = 0,

(7)

where TP , FP , FN , TN , represent the numbers of true positives, false positives, false negatives,
true negatives, generated by a binary classifier. F1 ranges between 0 (worst) and 1 (best); K ranges
between −1 (worst) and 1 (best), with 0 corresponding to the accuracy of the random classifier.

To turn F1 and K into measures for multilabel classification, we compute their “microaveraged”
versions (indicated as F

μ
1 and K μ) and their “macroaveraged” versions (indicated as FM1 and KM).

F
μ
1 andK μ are obtained by (a) computing the class-specific valuesTPj , FPj , FNj ,TNj ; (b) obtaining

TP as the sum of theTPj ’s (same for FP , FN ,TN), and then (c) applying Equations (6) and (7). FM1
and KM are obtained by first computing the class-specific values of F1 and K and then averaging
them across all c j ∈ C.
In all cases, we also report the results of paired sample, two-tailed t-tests at different confidence

levels (α = 0.05 and α = 0.001) to assess the statistical significance of the differences in perfor-
mance as measured by the averaged results.

4.3 Representing Text

We preprocess text by using the stop word removers and lemmatizers available for all our lan-
guages within the scikit-learn framework.8 As the weighting criterion, we use a version of the
well-known tfidf method, expressed as

tfidf (f ,d) = log #(f ,d) × log |Tri |
|d ′ ∈ Tri : #(f ,d ′) > 0| , (8)

where #(f ,d) is the raw number of occurrences of feature f in document d and λi is the language
d is written in; weights are then normalized via cosine normalization, as

w (f ,d) =
tfidf (f ,d)√∑

f ′ ∈Fi tfidf (f ′,d)2
. (9)

Our feature spaces Fi resulting from the different, language-specific training sets Tri are non-
overlapping, since (consistently with most multilingual text classification literature) we do not
make any attempt to detect matches between features across different languages. Detecting such
matches would be problematic, since identical surface forms do not always translate to identical
meanings; e.g., while word Madrid as detected in a Spanish text and word Madrid as detected in an
Italian text may have the same meaning, word burro as detected in a Spanish text and word burro

8http://scikit-learn.org/.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

http://scikit-learn.org/

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:13

as detected in an Italian text typically do not (burro means “donkey” in Spanish and “butter” in
Italian). The main reason why we do not attempt to detect such matches is that neither funnelling
(which uses different base classifiers for the different languages) nor any of the baseline systems
we use (see Section 4.4) would gain any advantage even from a hypothetically perfect detection of
such matches.

4.4 Baselines

We choose the following cross-lingual methods as the baselines against which to compare our
approach (see also Section 2 for more detailed descriptions of these methods):

• Naïve: This method consists in classifying each test document by a monolingual classifier
trained on the corresponding language-specific portion of the training set; thus, there is
no contribution from the training documents written in other languages. Naïve is usually
considered a lower bound for any CLC effort.

• LRI: Lightweight Random Indexing [31], a CLC method that does not use any external re-
source. In all experiments, we set the dimensionality of the reduced space to 25,000.

• CLESA: Cross-Lingual Explicit Semantic Analysis [44]. Unlike LRI and Funnelling, CLESA
does require external resources, in the form of a comparable corpus of reference texts. In
our experiments, consistent with the CLESA literature, as the reference texts we use 5,000
Wikipedia pages randomly chosen among the ones that (a) exist for all the languages in our
datasets, and (b) contain 50 words or more in each of their language-specific versions. We
use the Wikipedia Extractor tool9 to obtain clean text versions of Wikipedia pages from a
Wikipedia XML dump. The tool filters out any other information or annotation present in
Wikipedia pages, such as images, tables, references, and lists.

• KCCA: Kernel Canonical Correlation Analysis [50]. We use the Pyrcca [3] package to imple-
ment a cross-lingual classifier based on KCCA. Since Pyrcca does not provide specialized
data structures for storing sparse matrices,10 the amount of memory it requires to allocate
all the language-specific views of the term co-occurrence matrices grows rapidly. To keep
computation times within acceptable bounds, in our experiments we thus limit the num-
ber of comparable documents (for which we use Wikipedia articles, as for CLESA) to 2,000
(and not 5,000, as we do for CLESA). We set the number of components to 1,000 and (after
optimization via k-fold cross-validation) the regularization parameter to 1 for RCV1/RCV2
and to 10 for JRC-Acquis.

• DCI: Distributional Correspondence Indexing, as described in Reference [30], and adapted to
the cross-lingual setting by using the category labels (instead of a subset of terms) as the
pivots. The dimensionality of the embedding space is thus set to the number of classes.
In our experiments, as the distributional correspondence function (see Reference [30]), we
adopt the linear one, since in preliminary experiments (not reported here for the sake of
brevity) in which we used different such functions it proved the best one.

• MLE:Multilingual Embeddings derives document representations based on the multilingual
word embeddings (of size 300) released by Conneau et al. [7]. As proposed by the authors,
documents are represented as an aggregation of the embeddings associated to the words
they contain; since the word embeddings are aligned across languages, the documents end
up being represented in the same vector space, irrespective of the language they are written
in. Given that we are representing documents (and not sentences as in Reference [7]), we

9http://medialab.di.unipi.it/wiki/Wikipedia_Extractor.
10Pyrcca is primarily optimized for working not on texts but on images. Still, it is the only available implementation we
are aware of that allows to learn projections for more than two sets of variables.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

37:14 A. Esuli et al.

weigh each embedding by its tfidf score (instead of by its idf score as suggested in Ref-
erence [7]), to better reflect the relevance of the term in the document (we have indeed
verified tfidf to perform better than simple idf in preliminary experiments, which we do
not discuss for the sake of brevity).

• MLE-LSTM: Averaging embeddings causes a loss of word-order information. Modern NLP
approaches attempt to capture such information by training Recurrent Neural Networks
(RNNs) via “backpropagation through time.” MLE-LSTM uses a Long Short-Term Mem-
ory (LSTM) cell [22] as the recurrent unit, which, by processing sequences of embeddings,
produces a document embedding that is then passed through a series of feed-forward con-
nections with non-linear activations to finally derive a vector of probabilities for each class.
The embeddings are initialized in MLE-LSTM with the multilingual embeddings released
by Conneau et al. [7], and are fine-tuned during training. We use 512 hidden units in the
recurrent cell, and 2,048 units in the next-to-last feed-forward layer. The non-linear connec-
tion between layers is the ReLU (REctifier Linear Unit), and a 0.5 dropout is applied to every
layer and recurrent connections to prevent overfitting. We use the RMSprop optimizer [20]
with default parameters to minimize the binary cross-entropy loss of the posterior proba-
bilities with respect to the labels. We train the network through 200 epochs in RCV1/RCV2
and through 2,000 epochs in JRC-Acquis, until convergence, with an early-stopping cri-
terion that terminates the training after p epochs show no improvement on the held-out
validation set (a random sample containing 20% of the training data); p is the patience pa-
rameter, that we set to 20 for RCV1/RCV2 and to 200 for JRC-Acquis. Note that this is the
only method among all the tested ones that accounts for word-order information.

• UpperBound: This is not a real (or realistic) baseline, but a system only meant to act, as the
name implies, as an idealized upper bound that all CLC methods should strive to emulate
(although its performance is hard to reach in practice). In UpperBound each non-English
training example is replaced by its corresponding English version, a monolingual English
classifier is trained, and all the English test documents are classified. We deploy Upper-
Bound only for the JRC-Acquis dataset (where this gives rise to a training set of 12,687
English documents), since in RCV1/RCV2 the English versions of non-English training ex-
amples are not available.

Note that, despite the fact that ours is an ensemble learning method, we do not include other such
methods as baselines. The reason is that other ensemble learning methods (such as e.g., stacking,
bagging, or boosting) inherently deal (as already noted in Section 3.2) with “homogeneous” set-
tings, i.e., scenarios in which all examples lie in the same feature space. CLC is a “heterogeneous”
setting, in which examples written in different languages lie in different feature spaces, and the
above-mentioned methods are not equipped for dealing with these scenarios. In fact, to the best
of our knowledge, ours is the first ensemble learning method in the literature that can deal with
heterogeneous settings.

4.5 Learning Algorithms

We have implemented our methods and all the baselines as extensions of scikit-learn.
As the learning algorithm, we use Support Vector Machines (SVMs), in the implementation

provided by scikit-learn. As customary in multilabel classification, each first-tier multilabel
classifier is simply a set of independently trained binary classifiers, one for each class c ∈ C.
Note that, when training a Fun(tat) classifier, when for a certain (λi , c j) pair there are no

positive training examples, we generate a trivial rejector, i.e., a classifier h1i that returns scores
h1i (du , c j) = 0 (and, as a consequence, posterior probabilities Pr(c j |du) = 0) for all test documents

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:15

du written in language λi . In our datasets this can indeed happen, since, while we remove from
both datasets the classes that do not have any positive training examples, not all remaining classes
have positive training examples for every language.
For the k-fold cross-validation needed in the Fun(kfcv) method, we use k = 10. We should also

remark that, when training a Fun(kfcv) classifier, splitting the training set Tri into Tri1, . . . ,Trik
might end up in placing all the positive training examples in the same subset Trix (this always
happens when there is a single positive training example for (λi , c j)), which means that we would
be left with no positive training examples for training classifier h1ix . In this case, instead of gener-
ating (as in the Fun(tat) case discussed above) a classifier h1ix that works as a trivial rejector, we
train h1ix via Fun(tat), i.e., by also using the training examples inTrix . In preliminary experiments
that we have carried out on a separate dataset, the use of this simple heuristics has brought about
substantial benefits; as a result, we have adopted it in all the experiments reported in this article.11

We optimize the C parameter, which controls the trade-off between the training error and the
margin of the SVM classifier, through a fivefold cross-validation on the training set, via grid search
on {10−1, 100, . . . , 104}; we do this optimization individually for each method and for each run. For
the two funnelling methods, we perform this grid search only for the meta-classifier, leaving C
to its default value of 1 for the base classifiers; the main reason is that, especially in the case of
Fun(kfcv) (where an expensive 10-fold cross validation is already performed to generate theϕ2 (dl)
representations for the training examples), the resulting computational cost would be severe.
Adhering to established practices in text classification we use two different kernels depending

on the characteristics of the feature space. For all classifiers operating in a high-dimensional and
sparse feature space (i.e., UpperBound, LRI, the language-dependent classifiers of Naïve, plus the
base classifiers of the two funnelling methods), we use the linear kernel, while we adopt the RBF
kernel when the feature space is low-dimensional and dense (i.e., for CLESA, KCCA, DCI, MLE,
and the meta-classifier of the two funnelling methods).
For the two funnelling methods, we use the probability calibration algorithm implemented

within scikit-learn and originally proposed by Platt [34], which consists of using, as the map-
ping function f , a logistic function

Pr(c |d) = 1

1 + eαh (d,c)+β
(10)

and choosing the parameters α and β in such a way as to minimize (via k-fold cross-validation)
the negative log-likelihood of the training data.

5 RESULTS

5.1 Multilabel CLC Experiments

Table 1 shows our multilabel CLC results. In this table (and in all the tables of the next sections),
each reported value represents the average effectiveness across the 10 random versions of each
dataset (see Sections 4.1.1 and 4.1.2) and (with the exception of the UpperBound values, which are
computed on English test data only) across the |L| languages in the dataset. We report results for
eight combinations of (a) two datasets (RCV1/RCV2 and JRC-Acquis), (b) two evaluation measures

11One might wonder why, to avoid the possibility that the union of (k − 1) folds contains zero positive examples of a given
class, when training Fun(kfcv) we do not use stratified k-fold cross-validation (which consists in choosing the k folds in
such a way that the class prevalences in each fold are approximately equal to the class prevalences in the entire training
set). There are two reasons for this. First, using stratification would not eradicate the problem, because there are many
pairs (λi , c j) for which there are ≤1 positive examples in the entire training set. Second, stratification is convenient for
binary or single-label classification, but not for multilabel classification, where a different split into k folds must be set up
for each different class. For these reasons, we opt for using the traditional (non-stratified) variant.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:16 A. Esuli et al.

T
a
b
le
1.

M
u
lt
il
a
b
el
C
L
C
R
es
u
lt
s

Naïve

LRI

CLESA

KCCA

DCI

MLE

MLE-LSTM

Fun(kfcv)

Fun(tat)

UpperBound

F
μ 1

R
C
V
1/
R
C
V
2

0.
77
6
±0

.0
52

0.
77
1
±0

.0
50

0.
71
4
±0

.0
61

0.
61
6
±0

.0
65

0.
77
0
±0

.0
52

0.
69
6
±0

.0
60

0.
57
4
±0

.1
13

0.
80
1†
±0

.0
44

0
.8
0
2
±0

.0
41

–

JR
C
-A
cq
u
is

0.
55
9
±0

.0
12

0
.5
9
4
±0

.0
16

0.
55
7
±0

.0
24

0.
35
7
±0

.0
23

0.
51
0
±0

.0
14

0.
47
8
±0

.0
61

0.
37
8
±0

.0
41

0.
58
1
±0

.0
10

0.
58
7
±0

.0
09

0.
70
7

F
M 1

R
C
V
1/
R
C
V
2

0.
46
7
±0

.0
83

0.
49
0
±0

.0
77

0.
47
1
±0

.0
74

0.
38
5
±0

.0
79

0.
48
5
±0

.0
70

0.
45
3
±0

.0
60

0.
30
2
±0

.1
15

0.
51
2
±0

.0
67

0
.5
3
4
±0

.0
66

–

JR
C
-A
cq
u
is

0.
34
0
±0

.0
17

0
.4
1
1
±0

.0
27

0.
37
9
±0

.0
34

0.
20
6
±0

.0
18

0.
31
7
±0

.0
12

0.
30
0
±0

.0
65

0.
18
2
±0

.0
30

0.
35
6
±0

.0
13

0.
39
9
±0

.0
13

0.
59
9

K
μ

R
C
V
1/
R
C
V
2

0.
69
0
±0

.0
74

0.
69
6
±0

.0
69

0.
65
9
±0

.0
75

0.
55
0
±0

.0
73

0.
69
6
±0

.0
65

0.
64
4
±0

.0
70

0.
51
5
±0

.1
27

0.
73
1
±0

.0
58

0
.7
6
0
±0

.0
52

–

JR
C
-A
cq
u
is

0.
42
9
±0

.0
15

0.
47
6
±0

.0
20

0.
45
3
±0

.0
29

0.
24
4
±0

.0
22

0.
38
2
±0

.0
16

0.
42
9
±0

.0
50

0.
29
2
±0

.0
46

0.
45
7
±0

.0
12

0
.4
9
0
±0

.0
13

0.
63
2

K
M

R
C
V
1/
R
C
V
2

0.
41
7
±0

.0
90

0.
44
0
±0

.0
86

0.
43
4
±0

.0
80

0.
35
8
±0

.0
88

0.
45
6
±0

.0
82

0.
46
6
±0

.0
73

0.
28
0
±0

.1
18

0.
48
2
±0

.0
75

0
.5
0
6
±0

.0
73

–

JR
C
-A
cq
u
is

0.
28
8
±0

.0
16

0.
34
8
±0

.0
25

0.
33
0
±0

.0
34

0.
17
6
±0

.0
17

0.
27
4
±0

.0
13

0.
34
9†
†
±0

.0
47

0.
17
0
±0

.0
32

0.
32
8
±0

.0
13

0
.3
6
5
±0

.0
14

0.
54
7

E
ac
h
ce
ll
in
di
ca
te
s
th
e
va
lu
e
fo
r
th
e
eff

ec
ti
ve
n
es
s
m
ea
su
re

an
d
th
e
st
an
da
rd

de
vi
at
io
n
ac
ro
ss

th
e
10

ru
n
s.
A
gr
ey
ed
-o
u
t
ce
ll
w
it
h
a
va
lu
e
in

b
o
ld
fa
ce

in
di
ca
te
s
th
e
be
st
m
et
h
od

(w
it
h
th
e
ex
cl
u
si
on

of
U
pp
er
B
o
u
n
d
).
Su

p
er
sc
ri
pt
s
†a

n
d
††

de
n
ot
e
th
e
m
et
h
od

(i
f
an
y)

w
h
os
e
sc
or
e
is
n
ot

st
at
is
ti
ca
ll
y
si
gn

ifi
ca
n
tl
y
di
ff
er
en
t
fr
om

th
e
be
st
on

e
at
α
=
0.
05

(†)
or

at
α
=
0.
00
1
(††

).

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:17

Fig. 2. Per-language percentage improvement in FM1 with respect to each Naïve monolingual classifier in

RCV1/RCV2. Some methods (notably: KCCA and MLE) sometimes exhibit deteriorations so large that they

would be difficult to display in full; in these cases, bars are truncated at approximately −15% deterioration.

(F1 andK), and (c) two different ways of averaging the measure across the |C| classes of the dataset
(micro- and macro-averaging).
The results clearly indicate that our two funnelling methods perform very well. In particu-

lar, Fun(tat) is the best performer in six of eight combinations of dataset, evaluation measure,
averaging method, always outperforming all competitors in terms of the K measure and on the
RCV1/RCV2 dataset. The only exception to this superiority is recorded for F

μ
1 and FM1 on the JRC-

Acquis dataset, where LRI is the best method; note, however, that in these cases LRI outperforms
Fun(tat) only by a moderate margin, while in the previously discussed six cases the superiority
of Fun(tat) is more marked. In eight of eight cases Fun(tat) outperforms Naïve, CLESA, KCCA,
DCI, MLE, and MLE-LSTM, almost always by a very wide margin.
The experiments also indicate that the simpler Fun(tat) is consistently better than Fun(kfcv),

with the former outperforming the latter in all 8 cases. Together with the fact that Fun(tat) is
markedly cheaper (by a factor of (k + 1)) to train than Fun(kfcv), this makes Fun(tat) our method
of choice.
As already mentioned, the results displayed in Table 1 are averages across the |L| languages in

the dataset. Analysing the results in a finer-grained way (that is, on a language-by-language basis)
shows a further interesting fact: Fun(tat) and Fun(kfcv) are the only systems that outperform
the Naïve baseline in every case, i.e., for each language, dataset, evaluation measure, and aver-
aging method (micro- or macro-). An example of this fact is shown in Figure 2, which displays
the percentage improvement (in terms of FM1) obtained by the various methods with respect to
the Naïve baseline for the various languages on the RCV1/RCV2 dataset. The figure shows that
CLESA, DCI, KCCA, MLE, and even LRI (according to Table 1, the best competitor of funnelling
methods), perform worse than Naïve for some languages, while both Fun(tat) and Fun(kfcv)
outperform Naïve for all languages. MLE-LSTM is not included in this plot, since it always un-
derperforms Naïve by such a large margin that including it in the plot would substantially hinder
the visualization of the other results. Fun(tat) thus proves not only the best method of the lot but
also the most stable.
That KCCA underperforms CLESA on most languages might be explained by the reduction in

the number ofWikipedia articles that KCCA has observed (for the reasons discussed in Section 4.4)
during training with respect to CLESA. Concerning MLE, instead, it is immediate to observe that it
does not perform well, in many cases underperforming the Naïve baseline. A possible reason for
this might reside in the fact that MLE was originally devised for (and showed good performance
on) sentence classification; it is easy to conjecture that, when the units of classification are (as here)
linguistic objects much longer than sentences, a method that just computes averages across word

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:18 A. Esuli et al.

embeddings might introduce more noise than information. Regarding MLE-LSTM, we conjecture
that its very bad performance might be explained by two facts. First, many words from different
languages are not covered in the pre-trained multilingual embeddings; those words, which are
instead initialized with zero-embeddings,12 might affect negatively the entire optimization proce-
dure. Second, it is very likely that the training set for each language is too small for a deep model
to find meaningful cross-lingual patterns, thus making the classifier suffer from noisy information.
Incidentally, Figure 2 shows that the language on which Fun(tat) obtains the highest FM1 im-

provement on RCV1/RCV2, with respect to the Naïve baseline, is English (in Table 4, we show
this fact to hold in RCV1/RCV2, irrespective of evaluation measure and averaging method). This
shows that CLC techniques, and funnelling techniques in particular, can also benefit languages
that are often considered “easy” (since they have historically received more attention than others
from the research community), and for which obtaining improvements is thus considered harder.
An interesting observation we can make by observing Table 1 is that (a) UpperBound always

works better than Fun(tat) and Fun(kfcv), and (b) Fun(tat) and Fun(kfcv) always work bet-
ter than Naïve. Fact (a) indicates that the standard “bag of words,” content-based representations
that UpperBound uses work better than the representations based on posterior probabilities that
Fun(tat) and Fun(kfcv) use, because UpperBound, Fun(tat), and Fun(kfcv) use exactly the same
training examples (i.e., the examples in

⋃ |L |
i=1 Tri }), although represented differently. However,

fact (b) shows that the inferior quality of the latter representations is more than compensated
by the availability of many additional training examples, since Naïve uses a small subset (|L|
times smaller) of the set of training examples that Fun(tat) and Fun(kfcv) use.

5.2 Multilabel Monolingual and Binary Cross-lingual Experiments

As discussed in Section 3.2, we conjecture that the good performance obtained by funnelling in the
multilabel CLC experiments partly derives from the fact that the stochastic dependencies between
the classes are brought to bear, and partly derives from the ability of funnelling to leverage training
data written in language λs for classifying the data written in language λt . To verify if both factors
indeed contribute tomultilabel CLC, we runmultilabel monolingual experiments and binary cross-
lingual experiments.
In our multilabel monolingual experiments a funnelling system tackles a single language λi , i.e.,

there is just one first-tier multilabel classifier h1i and the meta-classifier is trained only from the

documents in Tri (instead of all the documents in
⋃ |L |

i=1 Tri , as was the case in Section 5.1). (Note
that, in this particular setting, stacking and funnelling coincide, as there is no heterogeneity in the
data.) With such a setup, any improvement with respect to the Naïve baseline can only be due
to the fact that funnelling brings to bear the stochastic dependencies between the classes. We run
multilabel monolingual experiments independently for all the |L| languages in the dataset. The
results (reported as averages across these |L| languages) are displayed in Column B of Table 2.
In our binary cross-lingual experiments, instead, a funnelling system tackles a single class, i.e.,

the ϕ2 (du) vectors fed to the meta-classifier only consist of one posterior probability (instead of
|C| posterior probabilities, as was the case in Section 5.1), so that any improvement with respect
to the Naïve baseline can only be due to the ability of funnelling to leverage training data written
in language λs for classifying the data written in language λt . We run binary cross-lingual exper-
iments independently for all the |C| classes in the dataset. The results are displayed in Column C
of Table 2.

12We have tested other approaches including random initialization, or replacing them with a language-specific unknown
token. None of them effectively help to improve the results.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:19

Table 2. Fun(tat) Results for Multilabel Monolingual Classification (Column B)

and Binary Cross-lingual Classification (Column C)

A B C D

Naïve Binary
MonoLin

Fun(tat) MultiLab
MonoLin

Fun(tat) Binary
CrossLin

Fun(tat)
MultiLab CrossLin

F
μ
1

RCV1/RCV2 0.776 ± 0.052 0.800†† ± 0.002 0.801†† ± 0.002 0.802 ± 0.041

JRC-Acquis 0.559 ± 0.012 0.577 ± 0.002 0.589 ± 0.002 0.587†† ± 0.009

FM1
RCV1/RCV2 0.467 ± 0.083 0.526 ± 0.013 0.532† ± 0.014 0.534 ± 0.066

JRC-Acquis 0.340 ± 0.017 0.369 ± 0.002 0.395†† ± 0.003 0.399 ± 0.013

K μ RCV1/RCV2 0.690 ± 0.074 0.747 ± 0.003 0.757 ± 0.004 0.760 ± 0.052

JRC-Acquis 0.429 ± 0.015 0.454 ± 0.002 0.487†† ± 0.002 0.490 ± 0.013

KM RCV1/RCV2 0.417 ± 0.090 0.492 ± 0.013 0.505† ± 0.014 0.506 ± 0.073

JRC-Acquis 0.288 ± 0.016 0.325 ± 0.003 0.359 ± 0.003 0.365 ± 0.014

The results in Columns A and D are from Table 1, and are reported here only for ease of comparison. The notational
conventions are the same as in Table 1.

Note that in these experiments, (a) we do not run LRI, CLESA, DCI, andMLE, since our only goal
here is to assess where the improvements of funnelling with respect to the Naïve baseline come
from, and (b) we only run Fun(tat), since its superiority with respect to Fun(kfcv) has already
been ascertained in a fairly conclusive way in Section 5.1; (c) in Table 2 (as, for that matter, in
all other tables in this article) the results reported in the four columns for the same row are all
comparable with each other, since the training set and the test set are the same in all four cases.
The results of Table 2 suggest the following observations:

(1) Using Fun(tat) to bring to bear the stochastic dependencies between different classes is
useful, as witnessed by the fact that the figures for the multilabel monolingual setup are
always higher than the corresponding figures for the Naïve baseline.

(2) Using Fun(tat) to leverage training data written in one language for classifying the data
written in other languages, is also useful, as witnessed by the fact that the figures for the
binary cross-lingual setup are always higher than the corresponding figures for the Naïve
baseline.

(3) The two observations above are confirmed by the fact that the figures for the multilabel
cross-lingual setup are (almost always) higher than the figures for both the multilabel
monolingual and the binary cross-lingual setups. In other words, both factors contribute
to the fact that Fun(tat) in the multilabel cross-lingual setup improves on the Naïve
baseline.

(4) While both factors do contribute, it is also clear that the bigger contribution comes not
from the stochastic dependencies between different classes, but from the training data in
other languages, as witnessed by the fact that the figures for the multilabel cross-lingual
setup are much closer to the binary cross-lingual ones than to the multilabel monolingual
ones.

5.3 Learning Curves for the Under-resourced Languages

As we have mentioned in the Introduction, CLC techniques are especially useful when we need to
perform text classification for under-resourced languages, i.e., languages for which only a small
number of training documents are available. In this section, we provide the results of experiments
aimed at showing how funnelling performs in such situations. We simulate these scenarios by

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:20 A. Esuli et al.

Fig. 3. Relative improvement in terms of FM1 on the RCV1/RCV2 dataset obtained by using Fun(tat) with

respect to using Naïve. Values on the x axis are the fractions of Tri that are used for training.

testing, on the λi test data, a Fun(tat) system trained on all the training data for the languages
in L/{λi } and on variable fractions of the training data for λi , which thus plays (especially when
these fractions are small) the role of the under-resourced language. When this fraction is 0% of the
total, this corresponds to the zero-shot setting; when it is 100% of the total, this corresponds to the
setup we have studied in Section 5.1. In our experiments, we generate these fractions by randomly
removing increasing amounts of data from the training set, so that the training sets for the smaller
fractions are proper subsets of those for the larger fractions. Like for all other experiments in
this article, the results we report are averages across the 10 random trials discussed at the end of
Sections 4.1.1 and 4.1.2.

Figure 3 shows, for the RCV1/RCV2 dataset and the FM1 measure (the cases of JRC-Acquis and/or
the other measures show similar patterns), the improvements that are obtained on the test sets of
the individual languages λi as a function of the fraction of the training data Tri used. There are
three main observations that we can make: (a) for each language λi and each fraction of training
data used, the variation in accuracy is always positive, i.e., there is always an improvement in
accuracy (and never a deterioration) as a result of using funnelling; (b) some languages benefit
more than others (in our case, English, French, and German stand out in this respect); (c) the
improvements are more marked when small fractions of λi training data are used. Fact (b) will
be the subject of detailed study in Section 5.4. As for Fact (c), this is intuitive after all, since it is
when the accuracy of a monolingual classifier is low (as it presumably is when it has been trained
from few labelled data) that the margins of improvement resulting from the contributions of other
languages are high.

5.4 Which Languages Contribute/Benefit Most?

In this section, we present “ablation” experiments in which we attempt to understand (a) which
languages contribute most, and (b) which languages benefit most, in terms of the classification
effectiveness that can be obtained via Fun(tat) in multilabel CLC. To do this, for each pair of lan-
guages λs , λt ∈ L, we classify the λt test data via (a) a Fun(tat) system trained on L/{λs } training
data, and (b) a Fun(tat) system trained on L training data. The improvement i (λs , λt) observed
in switching from (a) to (b) is a measure of the contribution that λs training data offer to classify-
ing λt data, or (said another way) of the benefit that the classification of λt data obtains from the

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:21

Table 3. Average Contribution (Across Languages λt ∈ L/{λs }) Provided
by λs Training Data to Classifying λt Test Data via Fun(tat)

EN IT ES FR DE SV DA PT NL FI HU

F
μ
1

RCV1/RCV2 +0.08% +0.68% +0.34% +0.49% +0.03% +2.25% +0.06% +0.41% +0.18% – –

JRC-Acquis −0.11% +2.85% −0.20% +0.67% +0.01% −0.56% −0.12% +2.67% +3.35% +0.03% +1.84%

FM1
RCV1/RCV2 −0.05% +0.36% −0.00% +0.11% +0.04% +0.75% +0.17% +1.19% +0.82% – –

JRC-Acquis −0.64% +5.98% −0.95% +0.83% −0.45% −10.23% −0.37% +3.61% +6.23% −0.60% +3.76%

K μ
RCV1/RCV2 +0.70% +1.52% +0.99% +0.41% +1.12% +7.71% +0.74% +2.91% +1.65% – –

JRC-Acquis +0.80% +7.85% +1.07% +3.63% +0.63% +2.67% +0.16% +7.78% +8.83% +1.85% +5.90%

KM
RCV1/RCV2 +0.39% +1.03% +0.45% +0.39% +0.60% +3.55% +0.46% +2.81% +2.07% – –

JRC-Acquis +0.99% +10.97% +1.37% +4.74% +0.66% −1.23% +0.15% +9.20% +11.65% +2.30% +8.36%

A greyed-out cell with a value in boldface indicates the language that has contributed most.

Table 4. Average Benefit (Across Languages λs ∈ L/{λt }) Obtained from the Presence

of λs Training Data in Classifying λt Test Data via Fun(tat)

EN IT ES FR DE SV DA PT NL FI HU

F
μ
1

RCV1/RCV2 +1.70% +0.76% +0.39% +0.95% +0.72% +0.08% −0.26% +0.20% −0.01% – –

JRC-Acquis +0.17% +1.22% +1.59% +1.31% +2.20% −0.45% +1.16% +0.53% +0.61% +2.27% −0.17%

FM1
RCV1/RCV2 +2.98% +0.27% +0.13% −0.12% +0.56% −0.06% −0.62% +0.21% +0.04% – –

JRC-Acquis +1.13% +2.12% +1.08% +1.22% +1.55% -2.16% +1.05% +0.57% +1.17% +0.75% −1.31%

K μ
RCV1/RCV2 +3.33% +2.73% +1.81% +2.40% +2.41% +1.26% +0.12% +2.60% +1.10% – –

JRC-Acquis +3.06% +4.45% +4.21% +4.47% +4.85% +1.89% +3.34% +3.01% +3.14% +5.62% +3.15%

KM
RCV1/RCV2 +4.68% +1.37% +0.77% +1.01% +2.60% +0.51% −0.25% +0.80% +0.25% – –

JRC-Acquis +4.85% +5.89% +4.29% +5.28% +5.15% +1.57% +3.57% +4.32% +4.69% +5.45% +4.11%

A greyed-out cell with a value in boldface indicates the language that has benefited most.

presence of λs training data. Similar to what we have done in Section 5.3, in all these experiments
we adopt an “under-resourced language” setting and use only 10% of the λt training examples. Note
that the notion of “improvement in effectiveness” mentioned above depends on which measure of
effectiveness (among the four we have employed in this article) we use as reference.
Displaying all the |L| × |L| individual i (λs , λt) results would probably not allow significant

insights to be obtained. However, in our multilabel CLC context they can be aggregated to measure

(1) which languages contribute most to the classification of data in other languages; we com-
pute the contribution α (λs) of language λs as the average value of i (λs , λt) across all
λt ∈ L/{λs };

(2) which languages benefit most from the presence of training data in other languages; we
compute the benefit β (λt) that language λt obtains as the average value of i (λs , λt) across
all λs ∈ L/{λt }.

These results are reported in Tables 3 and 4. Rather than commenting on the individual cases, one
interesting question we may ask ourselves is: what are the factors that make a language contribute
more, or benefit more, within a funnelling system for CLC? Are there interesting correlations
between these contributions/benefits and other measurable characteristics of the individual lan-
guages? Note that all languages have the same number of training examples (and they also have
the same number of test examples), both in RCV1/RCV2 and JRC-Acqis, so (even considering
what we say in Footnote 7) language frequency is unlikely to be a factor in our experiments.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:22 A. Esuli et al.

A first conjecture we test is if the contribution α (λs) is positively correlated with the accuracy
of the Naïve classifier for language λs as computed on λs test data (we here denote this accuracy as
FM1 (Naïve(λs))).13 This conjecture would seem sensible, since wewould expect the contribution of
a language to be high when its language-specific training data are high-quality (which is witnessed
by the fact that a classifier trained on them is capable of delivering high accuracy). We measure
correlation via the Pearson Correlation Coefficient (PCC), noted as ρ (X ,Y); its values range on
[−1,+1], with −1 indicating perfect negative correlation, +1 indicating perfect positive correlation,
and 0 indicating total lack of correlation. The above conjecture proves essentially correct, since
the resulting value of PCC is ρ (α (λs), FM1 (Naïve(λs))) = 0.788 (with a p-value of 0.011), which
indicates high correlation.14

A second conjecture we test is if the benefit β (λt) is negatively correlated with the accuracy
of the Naïve classifier for language λt (once trained with only 10% of the λt training examples,
which is the setting we have adopted in this section) as tested on λt test data. This conjecture
would also seem sensible, since we might expect the benefit β (λt) to be higher when the
effectiveness of Naïve on language λt is lower, since in this case the margins of improvement
are higher. In this case too, the conjecture proves essentially correct, since the resulting value of
PCC is ρ (β (λt), FM1 (Naïve(λt))) = −0.605 (p-value 0.08411), which indicates substantial negative
correlation.

5.5 Can We Do without Calibration?

As remarked in Section 3, one of the aspects that contributes more substantially to the computa-
tional cost of funnelling systems is probability calibration. The reason is that, as also remarked in
Section 4.5, calibration consists in finding the optimal parameters of Equation (10) through an ex-
tensive search within the space of parameter values. It is thus of some interest to study whether we
can do without calibration at all, and what the effect of this would be. We have thus run Fun(tat)
experiments to compare three alternative courses of action:

(1) NoProb: Renounce to converting classification scores into posterior probabilities. In this
setting, a Fun(tat) system is set up in which the meta-classifier (a) is trained with train-
ing documents represented by vectors S (dl) of classification scores, and, (b) once trained,
classifies documents represented by vectors S (du) of classification scores.

(2) NoCalib: Convert classification scores into posterior probabilities, but renounce to cali-
brate them. This corresponds to employing a version of Fun(tat) where, in place of the
logistic function of Equation (10), we use a non-parametric version of it, which corre-
sponds to Equation (10) with parameters α and β fixed to 1 and 0, respectively.

(3) Calib: Employ the usual version of Fun(tat) as defined in Section 3.1.

In Table 5 we report the results of running these three alternative systems; the experimental setting
is the same of Section 5.1, and the results of Columns “Naïve” and “Calib” of Table 5 indeed
coincide with those of Columns “Naïve” and “Fun(tat)” of Table 1.
One fact that emerges from these results is that the standard Calib setting always delivers the

best performance, which is unsurprising. A second fact that emerges is that the NoCalib setting
is always inferior to the NoProb setting. This is surprising, since we might have conjectured No-
Calib to outperform NoProb, due to the fact that NoCalib makes the outputs of the different base

13As in Section 5.3, as the measure of accuracy, we here employ FM1 in computing both α (λs) and the accuracy of the
Naïve classifier for language λs ; the other measures used in this article display similar results.
14For PCC, the p-value indicates the probability that two random variables that have no correlation generate a sample
characterized by a value of PCC at least as extreme as the one of the present sample.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:23

Table 5. Multilabel CLC Results with Alternative Fun(tat) Settings

N
a
ïv
e

N
o
P
ro

b

N
o
C
a
li
b

C
a
li
b

F
μ
1

RCV1/RCV2 0.776 ± 0.052 0.796 ± 0.045 0.789 ± 0.048 0.802 ± 0.041

JRC-Acquis 0.559 ± 0.012 0.585†† ± 0.012 0.578 ± 0.012 0.587 ± 0.009

FM1
RCV1/RCV2 0.467 ± 0.083 0.463 ± 0.082 0.443 ± 0.086 0.534 ± 0.066

JRC-Acquis 0.340 ± 0.017 0.376 ± 0.021 0.366 ± 0.015 0.399 ± 0.013

K μ RCV1/RCV2 0.690 ± 0.074 0.737 ± 0.062 0.716 ± 0.069 0.760 ± 0.052

JRC-Acquis 0.429 ± 0.015 0.478† ± 0.018 0.465 ± 0.015 0.490 ± 0.013

KM RCV1/RCV2 0.417 ± 0.090 0.428 ± 0.087 0.406 ± 0.091 0.506 ± 0.073

JRC-Acquis 0.288 ± 0.016 0.338† ± 0.022 0.325 ± 0.016 0.365 ± 0.014

Notational conventions are as in Table 1.

Table 6. Computation Times (in Seconds)

N
a
ïv
e

L
R
I

C
L
E
SA

K
C
C
A

D
C
I

M
L
E

M
L
E
-L
ST

M

Fu
n
(k
fc
v
)

Fu
n
(t
at

)

RCV1/RCV2
537 ± 69 5,506 ± 603 28,508 ±5351 18,204 ± 15 344 ± 51 1,293 ± 6 559 ± 103 1,041 ± 112 215 ± 16

6 ± 0.3 91 ± 3 575 ± 10 264 ± 7 9 ± 0.2 55 ± 1 3 ± 0.1 13 ± 0.5 11 ± 0.4

JRC-Acquis
6,005 ± 1,351 67,571 ± 2,070 63,497 ± 2,880 57,563 ± 241 4,888 ± 1,136 4,435 ± 25 26,991 ± 915 13,127 ± 2,428 4,987 ± 208

84 ± 2 1,713 ± 6 4,049 ± 123 1,372 ± 67 253 ± 3 874 ± 11 6 ± 0.4 312 ± 4 278 ± 2

First rows indicate training times, while second rows report testing times.

classifiers more comparable among each other (by mapping them all into the [0,1] interval) than
the outputs used by NoProb; this finding de facto rules out NoCalib from further consideration.

Something that is much less clear, instead, is how NoProb performs relative to Naïve and to the
standard Calib setting. In some cases NoProb performs very well, almost indistinguishably from
Calib (see F

μ
1 results for JRC-Acquis), but in other cases it even performs worse than the Naïve

baseline, and dramatically worse than Calib (see FM1 results for RCV1/RCV2).
All in all, these results confirm the theoretical intuition that performing a full-blown probability

calibration is by far the safest option, and the one guaranteed to deliver the best results in all
situations.

5.6 Efficiency

Table 6 reports training times and testing times for all the methods discussed in this article, as
clocked on our two datasets; each reported value is the average value across the 10 random trials.
The experiments were run on a machine equipped with a 12-core processor Intel Core i7-4930K at
3.40GHz with 32GB of RAM under Ubuntu 16.04 (LTS). For MLE-LSTM, the times reported corre-
spond to our Keras implementation running on a Nvidia GeForce GTX 1080 equipped with 8GB of
RAM.We limit our analysis to the multilabel CLC setup of Section 5.1 (thus skipping the discussion
of the setups of Sections 5.2 and 5.3), (a) since multilabel CLC is the most interesting context, and
(b) since for the setups discussed in Sections 5.2 and 5.3, we have run only Fun(tat) and Naïve.

The most interesting fact that emerges from Table 6 is that the superior accuracy of Fun(tat)
does not come at a price. Indeed, Fun(tat) often turns out to be one of the most efficient, or

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:24 A. Esuli et al.

sometimes the most efficient, among the methods we test; in particular, both at training time and
testing time it is one order of magnitude faster than LRI, its most important competitor. Fun(kfcv)
is, as previously observed, much more expensive to train than Fun(tat), due to the much higher
number of training and probability calibration rounds that it requires. CLESA is clearly the most
inefficient of all methods, which is explained by the fact that each (labelled or unlabelled) docu-
ment requires one document similarity computation for each feature in its vectorial representation.
The higher training-time efficiency of Fun(tat) with respect to Naïve is certainly also due to the
fact that, as mentioned in Section 4.5, we do not perform any optimization of the C parameter
for the base classifiers of Fun(tat), while we do for the classifiers of Naïve; should we perform
this parameter optimization the computational cost of Fun(tat) would certainly increase, but so
probably would also the differential in effectiveness between Fun(tat) and all the other baselines.
Note that the most efficient method in testing mode is MLE-LSTM, especially in the case of JRC-

Acquis, where it is one order of magnitude faster than the second-fastest method (Naïve). The
reasons are twofold: (a) as noted above, the MLE-LSTM experiments have been run on hardware
different from the hardware used for all the other experiments, so comparisons are difficult to
make; (b) in models trained via deep learning, such as MLE-LSTM, testing reduces to a simple
forward pass through the network connections, something that can be performed very quickly by
exploiting the massive parallelism offered by modern GPUs.

6 CAN FUNNELLING BE USED IN THE ZERO-SHOT SETTING?

The experiments we have discussed so far have assumed a setting in which there is a non-zero
number of training examples for each of the target languages, and in which the training examples
for the source languages have thus the goal of improving the accuracy of the classifiers generated
from the training examples of the target languages. We might wonder whether funnelling can
also be used in a zero-shot setting, i.e., one in which there are no training examples for the target
languages, and in which the training examples for the source languages would have the goal of
allowing to generate classifiers for the target languages that could otherwise not be generated at all.
Unfortunately, the answer is no. To see why, for simplicity let us discuss Fun(tat) (the case

of Fun(kfcv) is analogous). If there are no positive training documents for pair (λi , c j), then this
means that (as noted in Section 4.5) the base classifier h1i generated from the negative examples
only (i.e., from the examples in λi that are positive for some other class in C/{c j }) is a trivial rejector
for c j , i.e., one that only returns scores h1i (du , c j) = 0 for all unlabeled documents du written in
language λi . By definition, the calibration function turns all these scores into posterior probabilities
Pr(c j |du) = 0. As a result, when the negative training examples are reclassified byh1i for generating
vectorial representations that contribute to training the meta-classifier, these negative training
examples originate vectors that contain a 0 for class c j . Since these are all negative examples,
the meta-classifier is trained to interpret a value of 0 in the vector position corresponding to c j
as a perfect predictor that the document does not belong to c j . As a result, when an unlabelled
document in language λi is classified, the base classifier returns a value h1i (du , c j) = 0, which is
converted into a posterior probability Pr(c j |du) = 0, which is thus interpreted as unequivocally
indicating that du does not belong to c j , independently of the contributions coming from classes
other than c j and languages other than λi . The entire two-tier classifier is then a trivial rejector
for pair (λi , c j).15 This shows that funnelling is unsuitable for dealing with the scenario in which
there are no training examples for the target languages.

15Note that this is confirmed by the experiments plotted in Figure 3, where for x = 0 it holds that FM1 = 0 for all languages
λi . In fact, when there are no training examples for the target language (x = 0) the entire two-tier classifier is, as observed
above, a trivial rejector, which means that T P is 0 and, as a consequence, F1 is 0 too, as clearly visible for all plots in the
figure.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:25

This problem has prompted us to deviseways of enabling funnelling to also operate in “zero-shot
mode” (i.e., on documents expressed in languages for which no training documents are available).
The basic idea is to add a “zero-shot classifier” h1

(|L |+1) (which, for notational simplicity, we denote

byh1z) to the first-tier classifiers, i.e., a classifier that is to be invoked whenever a document written
in any language different from the ones in L (i.e., from the languages for which training examples
do exist) needs to be classified. This means that the second-tier classifier is trained also on (and
also receives as input) the posterior probabilities returned by h1z , which thus needs to be a well
calibrated classifier. Note that this modification fits smoothly into the framework, since funnelling
makes very few assumptions about the characteristics of the base classifiers. For simplicity, we
here derive the adaptation for Fun(tat); the case of Fun(kfcv) is similar.
More formally, let L be a set of languages for which labelled training examples are available.

In this new variant of the funnelling system, in the first tier there are (as usual) |L| language-
specific classifiers h11, . . . ,h

1
|L | , plus one classifier h

1
z trained (according to some method yet to be

specified) on all the training examples in any of the languages in L. For each training document dl
in language λi , two vectorial representations are generated that are used in training the second-tier
classifier h2, i.e., the vector of posterior probabilities

(fi (h
1
i (dl , c1)), . . . , fi (h

1
i (dl , c |C |)))

from the language-dependent classifier h1i , and the vector of posterior probabilities

(fz (h
1
z (dl , c1)), . . . , fz (h

1
z (dl , c |C |)))

from the zero-shot classifier h1z . Therefore, h
2 is trained on twice the number of |C|-dimensional

vectors with respect to the one we considered in the previous sections.
When a new unlabelled document du expressed in language λ is submitted for classification,

two scenarios are possible:

(1) λ ∈ L: this case reduces to funnelling as discussed in the previous sections, that is,
(a) the document is first represented in its corresponding language-specific feature space,
(b) a vector of posterior probabilities is then obtained using the corresponding language-
specific first-tier classifier, and (c) the second-tier classifier h2 takes the final decision;

(2) λ � L: in this case, (a) the document is first represented in the feature space of h1z , (b) a
vector of posterior probabilities is then obtained using the calibrated first-tier classifier
h1z , and (c) the second-tier classifier h2 takes the final decision.

CLESA, MLE, and MLE-LSTM are possible methods by means of which the representations ϕ1
z (d)

in the feature space of h1z can be obtained. For example, MLE trains a classifier on representations
of the documents consisting of averages of multilingual word embeddings. Sincemultilingual word
embeddings are aligned across languages [7], the same classifier would, in principle, be capable
of classifying a document written in any language λ (possibly with λ � L) for which pre-trained
and aligned word embeddings are available. Similar considerations enable CLESA to work with
documents in languages not in L, as long as a set of comparable Wikipedia articles are available
for their language.
For our experiments, we choose MLE as the method to generate the first-tier zero-shot classifier

because of the good trade-off between effectiveness and efficiency it has shown in our previous
experiments. We call the resulting ZSCLC classification method Fun(tat)-MLE.
To test Fun(tat)-MLE, we run experiments in which we incrementally augment the set of lan-

guages for which training examples are available. In each new experiment, the training set of a
new language is added, while the languages for which training data have not been added yet are

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:26 A. Esuli et al.

Fig. 4. Zero-shot CLC experiments using Fun(tat)-MLE in RCV1/RCV2 (top) and JRC-Acquis (bottom) for

the four evaluation measures (from left to right) F
μ
1 , F

M
1 , K μ , and KM . In each square matrix, columns

represent test languages, while rows represent training sets with an increasing (from top to bottom) number

of languages.

dealt with by the zero-shot classifier. For example, after the third experiment, the training data for
the three languages {DA,DE,EN} (i.e., Danish, German, English) have been added to the training
set (we add languages following the alphabetical order). The test set is instead fixed and always
contains all test examples of all languages.
The results of our experiments are displayed in Figure 4, where colours are used instead of

numerical data to make patterns and trends more evident. Each of the eight square matrixes of
coloured cells represents the experiments performed on one of our two datasets and using one
of our four evaluation measures; each cell in a matrix represents the accuracy obtained using the
training data for a given group of languages (indicated on the row) and the test data for a given
language (indicated on the column). In each such matrix, the lower triangular matrix reflects the
classification outcomes on test languages that are represented in the training set; because of this,
accuracy results are typically high (green). The upper triangular matrix represents the outcomes
for languages that are not represented in the training data, which thus tend to obtain lower scores
(red). For the sake of visualization, we have individully normalized each of the 8 colour maps; i.e.,
each such map contains both a dark green cell and a dark red cell, corresponding to the highest
value and lowest value of the evaluation function for that colour map, respectively (i.e., colours
have a relative meaning, and not an absolute one).
One clear pattern that emerges from Figure 4 is that the piecemeal addition of languages to the

training set improves the classification accuracy for the yet unseen (i.e., not represented in the
training set) languages, as witnessed by the gradual change in colour through columns, from dark
red on top to lighter red towards the bottom.
Notwithstanding this, a similar improvement does not clearly emerge for the already seen lan-

guages, i.e., the addition of languages to the training set does not seem to boost the classification
accuracy for the languages already represented in the training set. However, such an improvement
does exist in the “pure” version of Fun(tat), as verified and discussed in Sections 5.2, 5.3, and 5.4.
A possible explanation for this anomalymight be a negative side-effect introduced by theh1z clas-

sifier into themeta-classifier. The reason is that themetaclassifier is fedwith posterior probabilities

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:27

generated by classifiers working with differently characterized data. Inasmuch as the calibration
process fails to deliver perfectly calibrated probabilities, the two representations might happen to
be distributed differently, thus causing an “interference” effect between the two sources of infor-
mation. A possible solution to this problem, which we plan to investigate in future research, is to
reduce (as in Reference [16]) the gap between the two distributions via adversarial training, i.e., to
learn a transformation of the posterior probabilities from one distribution that makes them indis-
tinguishable from the posterior probabilities of the other distribution, as judged by a discriminator
model concurrently trained to discriminate between the two distributions.
For the time being, the experiments discussed in this section seem to indicate (a) that funnelling,

as a framework, can indeed be adapted to ZSCLC, but (b) that better ways of combining the pos-
terior probabilities returned by the first-tier classifiers should be investigated for ZSCLC. This is
something we plan to do in future research.

7 CONCLUSION

This article presents (a) a novel two-tiered ensemble learning method for heterogeneous data,
and (b) the first (to the best of our knowledge) application of an ensemble learning method to
multilingual (and more specifically: cross-lingual multilabel) text classification. While similar to
stacked generalization, this ensemble learning method (which we dub “funnelling”) is different
from it, because the base classifiers are specialized, each catering for a different type of objects
characterized by its own feature space. In cross-lingual classification, this means that different
base classifiers deal with documents written in different languages; funnelling makes it possi-
ble to bring them all together, so that the training examples for all languages in L contribute
to the classification of all unlabelled documents, irrespective of the language λ ∈ L they are
written in.
One advantage of funnelling is that it is learner-independent; while in this article we test it

with SVMs as the learning method, it can be set up to use (a) any learning device that outputs
non-binary classification scores (for the base classifiers), and (b) any learning device that accepts
numeric feature values as input (for the meta-classifier). An additional advantage of funnelling
is that, unlike several other multilingual methods, it does not require external resources, such as
multilingual dictionaries, machine translation services, or external parallel corpora.
The extensive experiments we have run on a comparable 9-language corpus (RCV1/RCV2) and

on a parallel 11-language corpus (JRC-Acquis) against a number of state-of-the-art baseline meth-
ods, show that Fun(tat) (the better of two funnelling methods we have tested) (a) almost al-
ways outperforms all baselines, irrespective of evaluationmeasure, averagingmethod, and dataset;
(b) delivers improvements over the naïvemonolingual baselinemore consistently (i.e., for all tested
languages, datasets, evaluation measures, averaging methods) than any other baseline considered;
and (c) is among the most efficient tested methods, at both training time and testing time. All this
has been confirmed across a range of experimental settings, i.e., binary or multilabel, monolingual
or cross-lingual. The two main factors behind the success of funnelling in cross-lingual multil-
abel classification are (a) its ability to leverage the training examples written in any language to
classify unlabelled examples written in any language, and (b) its ability to leverage the stochastic
dependencies between different classes.
Funnelling is useful whenever (a) the data to be classified comes in different types that require

different feature representations, and (b) despite these differences in nature, all data need to be
classified under a common classification scheme C. We are currently testing funnelling in other
such contexts, e.g., classifying images of products and textual descriptions of products under the
same set C of product classes.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

37:28 A. Esuli et al.

REFERENCES

[1] Georgios Balikas and Massih-Reza Amini. 2016. Multi-label, multi-class classification using polylingual embeddings.
In Proceedings of the 38th European Conference on Information Retrieval (ECIR’16). 723–728. DOI:https://doi.org/10.
1007/978-3-319-30671-1_59

[2] Nuria Bel, Cornelis H. Koster, and Marta Villegas. 2003. Cross-lingual text categorization. In Proceedings of the 7th

European Conference on Research and Advanced Technology for Digital Libraries (ECDL’03). 126–139. DOI:https://doi.
org/10.1007/978-3-540-45175-4_13

[3] Natalia Y. Bilenko and Jack L. Gallant. 2016. Pyrcca: Regularized kernel canonical correlation analysis in Python and
its applications to neuroimaging. Front. Neuroinform. 10 (2016), 49. DOI:https://doi.org/10.3389/fninf.2016.00049

[4] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, Heidelberg.
[5] Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2 (1996), 123–140. DOI:https://doi.org/10.1007/bf00058655
[6] Philip K. Chan and Salvatore J. Stolfo. 1997. On the accuracy of meta-learning for scalable data mining. J. Intell. Info.

Syst. 8, 1 (1997), 5–28. DOI:https://doi.org/10.1023/A:1008640732416
[7] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018. Word transla-

tion without parallel data. In Proceedings of the 6th International Conference on Learning Representations (ICLR’18).
[8] Oscar Day and TaghiM. Khoshgoftaar. 2017. A survey on heterogeneous transfer learning. J. Big Data 4 (2017), Article

17 (1–42). DOI:https://doi.org/10.1186/s40537-017-0089-0
[9] Morris H. DeGroot and Stephen E. Fienberg. 1983. The comparison and evaluation of forecasters. Statistician 32, 1/2

(1983), 12–22. DOI:https://doi.org/10.2307/2987588
[10] Susan T. Dumais, Todd A. Letsche, Michael L. Littman, and Thomas K. Landauer. 1997. Automatic cross-language

retrieval using latent semantic indexing. In Proceedings of the AAAI Spring Symposium on Cross-language Text and

Speech Retrieval. 18–24. DOI:https://doi.org/10.1007/978-1-4615-5661-9_5
[11] Saso Džeroski and Bernard Ženko. 2004. Is combining classifiers with stacking better than selecting the best one?

Mach. Learn. 54, 3 (2004), 255–273. DOI:https://doi.org/10.1023/b:mach.0000015881.36452.6e
[12] Manaal Faruqui and Chris Dyer. 2014. Improving vector space word representations using multilingual correlation. In

Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL’14).
462–471. DOI:https://doi.org/10.3115/v1/e14-1049

[13] Marc Franco-Salvador, Paolo Rosso, and Roberto Navigli. 2014. A knowledge-based representation for cross-language
document retrieval and categorization. In Proceedings of the 14th Conference of the European Chapter of the Association
for Computational Linguistics (EACL’14). 414–423. DOI:https://doi.org/10.3115/v1/e14-1044

[14] Yoav Freund and Robert E. Schapire. 1996. Experiments with a new boosting algorithm. In Proceedings of the 13th

International Conference on Machine Learning (ICML’96). 148–156.
[15] Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing semantic relatedness using Wikipedia-based explicit

semantic analysis. In Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI’07). 1606–
1611.

[16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. 2016. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 1
(2016), 2096–2030.

[17] Juan José García Adeva, Rafael A. Calvo, and Diego López de Ipińa. 2005. Multilingual approaches to text categorisa-
tion. Eur. J. Info. Prof. 5, 3 (2005), 43–51.

[18] Shantanu Godbole and Sunita Sarawagi. 2004. Discriminative methods for multi-labeled classification. In Proceedings

of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’04). 22–30. DOI:https://doi.org/
10.1007/978-3-540-24775-3_5

[19] Stephan Gouws, Yoshua Bengio, and Greg Corrado. 2015. Bilbowa: Fast bilingual distributed representations without
word alignments. In Proceedings of the 32nd International Conference on Machine Learning (ICML’15). 748–756.

[20] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
[21] David R. Hardoon, Sandor Szedmak, and John Shawe-Taylor. 2004. Canonical correlation analysis: An overview

with application to learning methods. Neural Comput. 16, 12 (2004), 2639–2664. DOI:https://doi.org/10.1162/
0899766042321814

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735–1780.
DOI:https://doi.org/10.1162/neco.1997.9.8.1735

[23] Harold Hotelling. 1936. Relations between two sets of variates. Biometrika 28, 3/4 (1936), 321–377. DOI:https://doi.
org/10.2307/2333955

[24] Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. 2012. Inducing crosslingual distributed representations of
words. In Proceedings of the 24th International Conference on Computational Linguistics (COLING’12). 1459–1474.

[25] Ludmila I. Kuncheva. 2004. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken, NJ.
[26] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. 2004. RCV1: A new benchmark collection for text catego-

rization research. J. Mach. Learn. Res. 5 (2004), 361–397.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

https://doi.org/10.1007/978-3-319-30671-1_59
https://doi.org/10.1007/978-3-319-30671-1_59
https://doi.org/10.1007/978-3-540-45175-4_13
https://doi.org/10.1007/978-3-540-45175-4_13
https://doi.org/10.3389/fninf.2016.00049
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/A:1008640732416
https://doi.org/10.1186/s40537-017-0089-0
https://doi.org/10.2307/2987588
https://doi.org/10.1007/978-1-4615-5661-9_5
https://doi.org/10.1023/b:mach.0000015881.36452.6e
https://doi.org/10.3115/v1/e14-1049
https://doi.org/10.3115/v1/e14-1044
https://doi.org/10.1007/978-3-540-24775-3_5
https://doi.org/10.1007/978-3-540-24775-3_5
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.2307/2333955
https://doi.org/10.2307/2333955

Funnelling: A New Ensemble Method for Heterogeneous Transfer Learning 37:29

[27] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting similarities among languages for machine transla-
tion. arXiv:1309.4168.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed representations
of words and phrases and their compositionality. In Proceedings of the 27th Annual Conference on Neural Information

Processing Systems (NIPS’13). 3111–3119.
[29] David Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith, and Andrew McCallum. 2009. Polylingual

topic models. In Proceedings of the 7th Conference on Empirical Methods in Natural Language Processing (EMNLP’09).
880–889. DOI:https://doi.org/10.3115/1699571.1699627

[30] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2016. Distributional correspondence indexing for cross-
lingual and cross-domain sentiment classification. J. Artific. Intell. Res. 55 (2016), 131–163. DOI:https://doi.org/10.
1613/jair.4762

[31] Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. 2016. Lightweight random indexing for polylingual text
classification. J. Artific. Intell. Res. 57 (2016), 151–185. DOI:https://doi.org/10.1613/jair.5194

[32] Steven R. Ness, Anthony Theocharis, George Tzanetakis, and Luis G. Martins. 2009. Improving automatic music
tag annotation using stacked generalization of probabilistic SVM outputs. In Proceedings of the 17th International

Conference on Multimedia (MM’09). 705–708. DOI:https://doi.org/10.1145/1631272.1631393
[33] Weike Pan, Erheng Zhong, and Qiang Yang. 2012. Transfer learning for text mining. In Mining Text Data, Charu C.

Aggarwal and ChengXiang Zhai (Eds.). Springer, Heidelberg, 223–258. DOI:https://doi.org/10.1007/978-1-4614-3223-
4_7

[34] John C. Platt. 2000. Probabilistic outputs for support vector machines and comparison to regularized likelihood
methods. In Advances in Large Margin Classifiers, Alexander Smola, Peter Bartlett, Bernard Schölkopf, and Dale
Schuurmans (Eds.). MIT Press, Cambridge, MA, 61–74.

[35] Peter Prettenhofer and Benno Stein. 2010. Cross-language text classification using structural correspondence learn-
ing. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL’10). 1118–1127.

[36] Leonardo Rigutini, Marco Maggini, and Bing Liu. 2005. An EM-based training algorithm for cross-language text
categorization. In Proceedings of the 3rd IEEE/WIC/ACM International Conference on Web Intelligence (WI’05). 529–
535. DOI:https://doi.org/10.1109/wi.2005.29

[37] Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2017. A survey of cross-lingual embedding models.
arXiv:1706.04902v2.

[38] Magnus Sahlgren. 2005. An introduction to random indexing. In Proceedings of the Workshop on Methods and Appli-

cations of Semantic Indexing.
[39] Magnus Sahlgren and Rickard Cöster. 2004. Using bag-of-concepts to improve the performance of support vector ma-

chines in text categorization. In Proceedings of the 20th International Conference on Computational Linguistics (COL-

ING’04). 487. DOI:https://doi.org/10.3115/1220355.1220425
[40] Georgios Sakkis, Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis, Constantine D. Spyropoulos, and

Panagiotis Stamatopoulos. 2001. Stacking classifiers for anti-spam filtering of e-mail. In Proceedings of the 6th Con-

ference on Empirical Methods in Natural Language Processing (EMNLP’01). 44–50.
[41] Fabrizio Sebastiani. 2015. An axiomatically derived measure for the evaluation of classification algorithms. In Pro-

ceedings of the 5th ACM International Conference on the Theory of Information Retrieval (ICTIR’15). 11–20. DOI:
https://doi.org/10.1145/2808194.2809449

[42] Yangqiu Song, Shyam Upadhyay, Haoruo Peng, and Dan Roth. 2016. Cross-lingual dataless classification for many
languages. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’16). 2901–2907.

[43] Philipp Sorg and Philipp Cimiano. 2008. Cross-language information retrieval with explicit semantic analysis. In
Proceedings of the 2008 Cross-Language Evaluation Forum (CLEF’08).

[44] Philipp Sorg and Philipp Cimiano. 2012. ExploitingWikipedia for cross-lingual andmultilingual information retrieval.
Data Knowl. Eng. 74 (2012), 26–45. DOI:https://doi.org/10.1016/j.datak.2012.02.003

[45] Ralf Steinberger, Bruno Pouliquen, Anna Widiger, Camelia Ignat, Tomaz Erjavec, Dan Tufis, and Dániel Varga. 2006.
The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. (2006). CoRR abs/cs/0609058.

[46] Kai Ming Ting and Ian H. Witten. 1999. Issues in stacked generalization. J. Artific. Intell. Res. 10 (1999), 271–289.
DOI:https://doi.org/10.1613/jair.594

[47] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An overview. Int. J. Data Warehous. Min.

3, 3 (2007), 1–13. DOI:https://doi.org/10.4018/jdwm.2007070101
[48] Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. 2016. Cross-lingual models of word embeddings: An

empirical comparison. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(ACL’16). 1661–1670. DOI:https://doi.org/10.18653/v1/P16-1157
[49] Ricardo Vilalta, Christophe Giraud-Carrier, Pavel Brazdil, and Carlos Soares. 2011. Inductive transfer. In Encyclopedia

of Machine Learning, Claude Sammut and Geoffrey I. Webb (Eds.). Springer, Heidelberg, 545–548.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

https://doi.org/10.3115/1699571.1699627
https://doi.org/10.1613/jair.4762
https://doi.org/10.1613/jair.4762
https://doi.org/10.1613/jair.5194
https://doi.org/10.1145/1631272.1631393
https://doi.org/10.1007/978-1-4614-3223-4_7
https://doi.org/10.1007/978-1-4614-3223-4_7
https://doi.org/10.1109/wi.2005.29
https://doi.org/10.3115/1220355.1220425
https://doi.org/10.1145/2808194.2809449
https://doi.org/10.1016/j.datak.2012.02.003
https://doi.org/10.1613/jair.594
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.18653/v1/P16-1157

37:30 A. Esuli et al.

[50] Alexei Vinokourov, John Shawe-Taylor, and Nello Cristianini. 2002. Inferring a semantic representation of text via
cross-language correlation analysis. In Proceedings of the 16th Annual Conference on Neural Information Processing

Systems (NIPS’02). 1473–1480.
[51] XiaojunWan. 2009. Co-training for cross-lingual sentiment classification. In Proceedings of the 47th Annual Meeting of

the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing

(ACL/IJCNLP’09). 235–243. DOI:https://doi.org/10.3115/1687878.1687913
[52] David H. Wolpert. 1992. Stacked generalization. Neural Netw. 5, 2 (1992), 241–259. DOI:https://doi.org/10.1016/

s0893-6080(05)80023-1
[53] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. 2004. Probability estimates for multi-class classification by pairwise

coupling. J. Mach. Learn. Res. 5 (2004), 975–1005.

Received May 2018; revised April 2019; accepted April 2019

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 37. Publication date: May 2019.

https://doi.org/10.3115/1687878.1687913
https://doi.org/10.1016/s0893-6080(05)80023-1
https://doi.org/10.1016/s0893-6080(05)80023-1

