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We discuss an approach to the automatic expansion of domain-specific lexicons, that is, to the

problem of extending, for each ci in a predefined set C = {c1, . . . , cm} of semantic domains, an initial

lexicon Li
0

into a larger lexicon Li
1
. Our approach relies on term categorization, defined as the task

of labeling previously unlabeled terms according to a predefined set of domains. We approach this

as a supervised learning problem in which term classifiers are built using the initial lexicons as

training data. Dually to classic text categorization tasks in which documents are represented as

vectors in a space of terms, we represent terms as vectors in a space of documents. We present the

results of a number of experiments in which we use a boosting-based learning device for training

our term classifiers. We test the effectiveness of our method by using WordNetDomains, a well-

known large set of domain-specific lexicons, as a benchmark. Our experiments are performed using

the documents in the Reuters Corpus Volume 1 as implicit representations for our terms.
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1. INTRODUCTION

The generation of domain-specific lexicons (i.e., lexicons consisting of terms
pertaining to a given domain or discipline) is a task of increased applica-
tive interest since such lexicons are of the utmost importance in a variety of
tasks pertaining to natural language processing and information access. One
of these tasks is, for instance, query expansion for information retrieval (IR)
systems addressing specialized document collections (as in, e.g., thematic, “ver-
tical” portals) in which terms synonymous or quasisynonymous to the query
terms are added to the query in order to retrieve more relevant documents.
Domain-specific lexicons are also useful for word-sense disambiguation (WSD),
the task of determining, given the occurrence ow of a polysemous word w,
the sense of ow. Results from Magnini et al. [2002] indicate that, given a
word occurrence ow whose possible senses w1, . . . , ws pertain each to a dif-
ferent domain d1, . . . , ds, the domain di to which most of the terms occurring
in the context of ow pertain has a high probability of indicating the correct
sense; that is, there is a high probability that the right sense of ow is wi

(see Figure 1). Domain-specific lexicons are then of fundamental importance
for WSD since it is important to know to which domains the terms occur-
ring in the context of ow pertain. Thelen and Riloff [2002] quote several other
works in which domain-specific lexicons (which they call semantic lexicons)
have proven useful for performing natural language processing tasks such
as information extraction [Riloff and Shepherd 1999; Soderland et al. 1995],
anaphora resolution [Aone and Bennett 1996], question answering [Moldovan
et al. 1999; Hirschman et al. 1999], and prepositional phrase attachment
[Brill and Resnik 1994].

Unfortunately, the manual generation of domain-specific lexicons is expen-
sive, since it requires the intervention of human experts, that is, lexicographers
and domain experts working together. Besides being expensive, such a manual
approach does not allow for fast response to rapidly emerging needs; in an era
of frantic technical progress, new disciplines emerge quickly, while others dis-
appear as quickly, and in an era of evolving consumer needs, the same goes
for new market niches. There is thus a need for cheaper and faster methods
for answering application needs than manual lexicon generation. The manual
approach is also prone to errors of omission in that a lexicographer may eas-
ily overlook infrequent, nonobvious terms that are nonetheless important for
many tasks.

Many applications also require that the lexicons be not only domain-specific,
but also tailored to the specific data tackled in the application. For instance, in
query expansion for IR systems addressing specialized document collections,
the synonymous or quasisynonymous terms to be added to the query terms
should be chosen among the ones that occur in the document collection, other-
wise they would be useless; conversely, the relevant terms which occur in the
document collection should potentially be added. Therefore, for this application
the ideal domain-specific lexicon should contain all and only the technical terms
that occur in the document collection under consideration and should thus be
generated directly from this collection.
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Fig. 1. Word sense disambiguation by using domain information (example taken from Senseval-

2, the international campaign for the experimental evaluation of WSD systems). Subscripts ap-

pended to terms indicate the domain to which the terms are known to belong (F=FURNITURE,

P=PLAY, L=LITERATURE). The word occurrence to be disambiguated is the second occurrence of the

word “chairs” and its possible senses pertain to the domains LITERATURE, FURNITURE, and PLAY.

Since most of the terms occurring in the context of this word occurrence belong to the FURNITURE

domain, it seems reasonable to conclude that also this occurrence of “chairs” should belong to

FURNITURE.

1.1 Our Proposal

In this article, we propose a methodology for the automatic expansion of domain-
specific lexicons. This methodology relies on term categorization, a novel task
that employs a combination of techniques from IR and machine learning (ML).
Specifically, we view the expansion of such lexicons as a process of learning,
from a corpus of texts, previously unknown associations between terms and
domains (i.e., disciplines, or fields of activity).1

The process generates, for each ci in a set C = {c1, . . . , cm} of predefined
domains, a lexicon Li

1, bootstrapping from a lexicon Li
0 given as input. As-

sociations between terms and domains are learned from a set θ of unlabeled
(i.e., not tagged with domain labels) textual documents (hereafter called cor-
pus). The process builds the lexicons L1 = {L1

1, . . . , Lm
1 } for all the domains

C = {c1, . . . , cm} in parallel from the same corpus θ . The only requirement on θ

is that at least some of the terms in each of the lexicons in L0 = {L1
0, . . . , Lm

0 }
should occur in it (if none among the terms in a lexicon L j

0 occurs in θ , then

no new term is added to L j
0 ). Iterating this process would further allow the

expansion of L1 into increasingly larger lexicons L2, L3, . . . , by simply using
new corpora of unlabeled documents.

The method we propose is inspired by text categorization, the activity of
automatically building, by means of machine learning techniques, automatic
text classifiers, that is, programs capable of labeling natural language texts
with (zero, one, or several) thematic categories from a predefined set C =
{c1, . . . , cm} [Sebastiani 2002]. The construction of an automatic text classifier

1We want to point out that our use of the word “term” is somewhat different from the one often

used in natural language processing and terminology extraction where it often denotes a sequence
of lexical units expressing a concept of the domain of interest. Here we use this word in a neutral

sense, that is, without making any commitment as to its consisting of a single word or a sequence

of words.
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requires the availability of a set ψ = {〈d1, C1〉, . . . , 〈dh, Ch〉} of preclassified
documents, where a pair 〈d j , Cj 〉 indicates that document d j belongs to all
and only the categories in Cj ⊆ C. A general inductive process (called the
learner) automatically builds a classifier for the set C by learning the char-
acteristics of C from a training set Tr = {〈d1, C1〉, . . . , 〈d g , Cg 〉} ⊂ ψ of doc-
uments. Once a classifier has been built, its effectiveness (i.e., its capability
to take the right categorization decisions) may be tested by applying it to the
test set Te = {〈d g+1, Cg+1〉, . . . , 〈dh, Ch〉} = ψ − Tr and checking the degree
of correspondence between the decisions of the automatic classifier and those
encoded in the corpus. While the purpose of text categorization is that of clas-
sifying documents represented as vectors in a space of terms, the purpose of
term categorization, as we formulate it, is (dually) that of classifying terms
represented as vectors in a space of documents. In this task, terms are thus
items that may belong, and must thus be assigned, to (zero, one, or several)
domains belonging to a predefined set. In other words, starting from a set �i

0

of preclassified terms, a new set of terms �i
1 is classified, and the terms in

�i
1 which are deemed to belong to ci are added to Li

0 to yield Li
1. The set �i

0

is composed of lexicon Li
0, acting as the set of positive examples of ci, plus a

set of terms known not to belong to ci, acting as the set of negative examples
of ci.

For input to the learning device and to the term classifiers that this will
eventually build, we use bag-of-documents representations for terms, dual to
the “bag of terms” representations commonly used in text categorization. As
the learning device, we adopt ADABOOST.MHKR [Sebastiani et al. 2000; Nardiello
et al. 2003], a more efficient variant of the ADABOOST.MHR algorithm proposed
in Schapire and Singer [2000]. Both algorithms are an implementation of boost-
ing, a method for supervised learning which has successfully been applied to
many different domains and which has proven one of the best performers in
text categorization applications so far [Schapire and Singer 2000; Sebastiani
et al. 2000; Nardiello et al. 2003]. Boosting is based on the idea of relying
on the collective judgment of a committee of classifiers that are trained se-
quentially; in training, the k-th classifier special emphasis is placed on the
correct categorization of the training examples which have proven harder
for (i.e., have been misclassified more frequently by) the previously trained
classifiers.

This article is organized as follows. In Section 2, we describe how we
represent terms by means of a bag-of-documents representation. Section 3
presents our approach to the expansion of domain-specific lexicons, discussing
the operational methodology for employing the approach in practice (Sec-
tion 3.1) and the experimental methodology we have followed for testing it
(Section 3.2). Section 4 describes the results of our experiments in which
we attempt to expand (in parallel) several domain-specific lexicons (42 in
some experiments, 145 in others) by using a corpus of more than 800,000
documents. In Section 5, we review related work on the automated gen-
eration of lexical resources and spell out the differences between our ap-
proach and existing approaches. Section 6 concludes, pointing to avenues for
improvement.
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2. REPRESENTING TERMS IN A SPACE OF DOCUMENTS

2.1 Representing Documents

The approach to term representation that the IR community has almost uni-
versally adopted is a natural evolution of the approach that the very same
community has developed for document representation. This latter approach
(that we will here call the term occurrence representation (TOR)) assumes that
a document d j is represented as a vector of term weights �d j = 〈w1 j , . . . , wr j 〉,
where r is the cardinality of the dictionary T and 0 ≤ wkj ≤ 1 represents, loosely
speaking, the contribution of term tk to the specification of the semantics of d j .
Usually, the dictionary is equated with the set of terms that occur at least once
in at least α documents in the training set Tr (with α a predefined threshold,
typically ranging between 1 and 5).

Different approaches to document representation may result from different
choices (i) as to what a term is, and (ii) as to how term weights should be
computed. A frequent choice for (i) is to use single words (minus “stop words,”
i.e., topic-neutral words such as articles and prepositions which are usually
removed in advance) or their stems (i.e., their morphological roots). Different
weighting functions may be used for tackling issue (ii); a frequent choice is the
(cosine-normalized) tfidf function, where two intuitions are at play: (a) the more
frequently tk occurs in dj , the more important for dj it is (the term frequency
assumption); (b) the more documents tk occurs in, the smaller its contribution
is in characterizing the semantics of a document in which it occurs (the in-
verse document frequency assumption). Weights computed by tfidf techniques
are often normalized so as to contrast the tendency of tfidf to emphasize long
documents. The version of tfidf that will provide the inspiration for the term
representations discussed in this article is2

tfidf (tk , dj ) = tf (tk , dj ) · log
|D|

#D(tk)
, (1)

where #D(tk) denotes the number of documents in the document collection D in
which tk occurs at least once and

tf (tk , dj ) =
{

1 + log #(tk , dj ) if #(tk , dj ) > 0
0 otherwise

,

where #(tk , dj ) denotes the number of times tk occurs in dj . In Equation (1), the

tf (tk , dj ) factor is called term frequency, while the log |D|
#D(tk )

factor is called inverse
document frequency. Weights obtained by Equation (1) are then normalized by
means of cosine normalization, finally yielding

wkj = tfidf (tk , dj )√∑|T |
s=1 tfidf (ts, dj )2

. (2)

2We stress that our use of this particular form of tfidf (and our use of tfidf itself, for that matter)

is just as a proof of concept. The arguments we put forth in this article are independent of the

weighting function used, and any other function could have been used for this purpose.
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2.2 Representing Terms

The term representation that the IR community has almost universally adopted
(that we will here call the document occurrence representation (DOR)) is a dual
version of the document representation discussed in Section 2.1, and embod-
ies the idea that, as the semantics of a document may be viewed as a func-
tion of the bag of terms that occur in it, the semantics of a term may be
viewed as a function of the bag of documents in which the term occurs. A term
t j is then represented as a vector of document weights �t j = 〈w1 j , . . . , wr j 〉,
where r is the cardinality of the document collection D, and 0 ≤ wkj ≤ 1
represents the contribution of dk to the specification of the semantics of t j .
The very same functions that were used for weighting the contribution of
terms in document representations can be used for weighting the contribu-
tion of documents in term representations. Mutatis mutandis, the tfidf func-
tion of Equation (1), now aptly renamed the dfitf function, is reinterpreted as
follows:

dfitf (dk , t j ) = df (dk , t j ) · log
|T |

#T (dk)
, (3)

where #T (dk) denotes the number of distinct terms in the dictionary T which
occur at least once in dk and

df (dk , t j ) =
{

1 + log #(dk , t j ) if #(dk , t j ) > 0
0 otherwise

,

where #(dk , t j ) denotes the number of times tk occurs in dj . Weights ob-
tained by Equation (3) are normalized by cosine normalization, finally
yielding

wkj = dfitf (dk , t j )√∑|D|
s=1 dfitf (ds, t j )2

. (4)

Symmetrically to the case discussed in Section 2.1, the intuitions are that (a)
the more frequently ti occurs in dk , the more important dk is for characterizing
the semantics of ti; (b) the more distinct terms dk contains, the smaller its
contribution is in characterizing the semantics of a term ti which occurs in it.

Incidentally, it is interesting to note that, in switching from text indexing to
term indexing, idf and cosine normalization switch their roles: the intuition that
terms occurring in many documents should be deemphasized is implemented
by idf in text indexing and cosine normalization in term indexing, while the
intuition that longer documents need to be deemphasized is implemented by
cosine normalization in text indexing and (the now more aptly renamed) itf in
term indexing.

This approach to term representation is very elegant in that it is based on a
minimal set of assumptions (namely, the “extensional” assumption that objects
can be represented as bags of features, and the assumption that occurrence
can be used as featurehood) and can be instantiated by means of any indexing
technique (here we have used cosine-normalized tfidf ) either from the tradi-
tion of text indexing or not. Note also that any program or data structure that

ACM Transactions on Speech and Language Processing, Vol. 3, No. 1, May 2006.
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implements a text indexing function may be used straightaway for term index-
ing with no modification; one needs only to feed the program with the term
identifiers in place of the document identifiers and vice versa. There is thus
a clear symmetry between terms and documents in the sense that one may
determine the meaning of the other, depending on one’s viewpoint. The only
aspect for which the symmetry breaks in practice is that, both in document and
term indexing, we tend to directly pick a set of documents to work with, and
the set of terms we work with is (indirectly) determined as a consequence in
the sense that it coincides with the set of terms appearing in the chosen doc-
uments. Therefore, it is usually the case that documents are the independent
variables and terms are the dependent variables of our problem, whatever the
problem.

A straightforward consequence of this approach is that semantic relatedness
between terms is viewed as a function of term co-occurrence, a heuristic notion
which has been widely used in many past approaches to lexicon generation
(see Section 5). In fact, according to our chosen approach, two terms have the
highest similarity when they occur exactly in the same documents and with the
same frequency, and are very similar when they co-occur in a high proportion of
documents and with similar frequencies. However, while the past approaches
discussed in Section 5 only deal with a “pure” version of co-occurrence, our term
indexing approach brings about, for free, a weighted and length-normalized
notion of co-occurrence, thus injecting higher sophistication into the measure
of term similarity.

3. GENERATING DOMAIN-SPECIFIC LEXICONS BY SUPERVISED LEARNING

3.1 Operational Methodology

We are now ready to describe the overall process that we will follow for the
expansion of domain-specific lexicons. We start from a set of domain-specific
lexicons L0 = {L1

0, . . . , Lm
0 }, one for each domain in C = {c1, . . . , cm}, and from a

corpus θ . We index the terms that occur in L0 by means of the term indexing
technique described in Section 2.2. This yields, for each term tk , a representation
consisting of a vector of weighted documents where the length of the vector is
r = |θ |. By using the terms in {L1

0, . . . , Lm
0 } as positive training examples for

{c1, . . . , cm}, respectively, and by choosing negative training examples suitably
(see Section 4.3), we then generate m classifiers � = {�1, . . . , �m} by applying
the ADABOOST.MHKR algorithm. Note that the m classifiers are independent,
which means that a given term may be classified into zero, one, or several
domains at the same time.

Note that ADABOOST.MHKR, like its predecessor ADABOOST.MHR , uses binary
vectorial representations. This will mean that, in the ADABOOST.MHKR experi-
ments, a binary version of the dual indexing approach of Section 2.2 will be used
(which consists in assigning a weight of 1 or 0 to a document in which the term
occurs or does not occur, respectively). The full-fledged version of the dual index-
ing approach will instead be used in the experiments of Section 4.4.7 in which we
replace ADABOOST.MHKR with a learner (SVMLIGHT) that uses nonbinary input.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 1, May 2006.
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Table I.

Domain expert judgments

ci YES NO

classifier YES TPi FPi
judgments NO FNi TNi

The contingency table for domain ci . Here, FPi

(false positives wrt ci ) is the number of test terms

incorrectly classified under ci ; TNi (true negatives
wrt ci ), TPi (true positives wrt ci ) and FNi (false
negatives wrt ci ) are defined accordingly

3.2 Experimental Methodology

The process we have described in Section 3.1 is the one that we would apply
in an operational setting. In an experimental setting, we are also interested in
evaluating the effectiveness of our approach on a benchmark. The difference
with the process outlined in Section 3.1 is that, at the beginning of the process,
the lexicon L0 is split into a training set and a test set; the classifiers are learned
from the training set and are then tested on the test set by checking how good
they are at extracting the terms in the test set from the corpus θ .

We will comply with standard text categorization practice in evaluating term
categorization effectiveness by a combination of precision (π ), the percentage
of positive categorization decisions that turn out to be correct, and recall (ρ),
the percentage of positive correct categorization decisions that are actually
made. Since most classifiers can be tuned to emphasize one at the expense
of the other, only combinations of the two are usually considered significant.
Following common practice, as a measure combining the two, we will adopt
their harmonic mean, that is, F1 = 2πρ

π+ρ
. Effectiveness will be computed with

reference to the contingency table illustrated in Table I. When effectiveness
is computed for several domains, the results for individual domains must be
averaged in some way. We will do this both by microaveraging (domains count
proportionally to the number of their positive test examples), that is,

πμ = TP
TP + FP

=
∑|C|

i=1 TPi∑|C|
i=1(TPi + FPi)

(5)

ρμ = TP
TP + FN

=
∑|C|

i=1 TPi∑|C|
i=1(TPi + FNi)

(6)

and by macroaveraging (all domains count the same), that is,

π M =
∑|C|

i=1 πi

m
ρM =

∑|C|
i=1 ρi

m
. (7)

Here, μ and M indicate microaveraging and macroaveraging, respectively, while
the other symbols are as defined in Table I. Microaveraging rewards classifiers
that behave well on frequent domains (i.e., domains with many positive test
examples), while classifiers that perform well also on infrequent domains are
emphasized by macroaveraging. Whether one or the other should be adopted
obviously depends on the application requirements.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 1, May 2006.
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4. EXPERIMENTS

In order to test our approach according to the methodology described in Sec-
tion 3.2, we need two types of resources: (i) a corpus θ of documents which
provides the implicit representation for terms, and (ii) a set of domain-specific
lexicons L0 = {L1

0, . . . , Lm
0 }.

We now describe the resources we used in our experiments.

4.1 The Corpus

As the corpus θ , we used the Reuters Corpus Volume 1 (RCV1)3, a set of docu-
ments made available by Reuters for text categorization experimentation and
consisting of the 806,812 news stories produced by Reuters from 20 Aug 1996
to 19 Aug 1997; all news stories are in English, and have 109 distinct terms
per document on average [Rose et al. 2002]. Note that, although the texts of
RCV1 are labeled by thematic categories, we did not make use of such labels
(nor would it have made sense to use them, given that these categories are
very different from and basically unrelated to the ones we are working with).
The reason why we chose this corpus is that it provides a large enough set of
data and that it is domain-generic, that is, it is not related in any semantically
significant sense to the domains we used in the experiments.

4.2 The Lexicons

As the domain-specific lexicons, we used an extension of WordNet called Word-
NetDomains. WordNet [Fellbaum 1998] is a large, widely available, domain-
generic, monolingual, machine-readable dictionary in which sets of synony-
mous words are grouped into 99,642 synonym sets (or synsets) organized in
a directed acyclic graph. WordNet contains 173,941 word senses and 129,502
different lemmas; among these latter, 94,474 are nouns. In this work, we will
refer to WordNet version 1.6.

In WordNet, only a few synsets are labeled with thematic categories, mainly
contained in the glosses. This limitation is overcome in WordNetDomains, an
extension of WordNet built by Magnini and Cavaglià [2000], in which each
synset has been labeled with one or more from a set of 164 thematic categories,
called domains4. The 164 domains of WordNetDomains are a subset of the cat-
egories belonging to the classification scheme of Dewey Decimal Classification
(DDC); example domains are BASKETBALL, SPORT, and ZOOLOGY

5. These 164 do-
mains have been chosen by Magnini and Cavaglià from the much larger set of
DDC categories since they are the most popular labels used in dictionaries for
sense discrimination purposes. Domains have long been used in lexicography
(where they are sometimes called subject labels) to mark technical usages of
words (see Figure 2 for an example). Although they convey useful information

3http://trec.nist.gov/data/reuters/reuters.html.
4From the point of view of our term categorization task, the fact that more than one domain may be

attached to the same synset means that ours is a multilabel categorization task [Sebastiani 2002,

Section 2.2].
5WordNetDomains is publicly available at http://tcc.itc.it/research/textec/topics/

disambiguation/download.html.
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Fig. 2. Two domains (CRICKET and AVIATION) used as word sense discrimination devices in a dictio-

nary entry for batsman. The example is drawn from the Oxford Advanced Learner’s Dictionary of

Current English, 3rd edition.

for sense discrimination, they typically tag only a small portion of a dictionary.
WordNetDomains instead extends the coverage of domain labels to an entire, ex-
isting lexical database, that is, WordNet. In this work, we will refer to WordNet-
Domains Version 1.0 - 070501. Note that WordNetDomains is organized in a tree
structure with 5 top-level domains and a depth of at most 4 levels.

A domain may include synsets of different syntactic types. For instance, the
MEDICINE domain groups together senses from Nouns, such as doctor#1 (the first
among several senses of the word “doctor”) and hospital#1, and from Verbs,
such as operate#7. A domain may include senses from different WordNet sub-
hierarchies. For example, SPORT contains senses such as athlete#1 which de-
scends from life form#1; game equipment#1 from physical object#1; sport#1
from act#2; and playing field#1 from location#1. Note that domains may
group different senses of the same word into different thematic clusters with
the side effect of reducing WordNet word polysemy.

The annotation methodology used in Magnini and Cavaglià [2000] for creat-
ing WordNetDomains was mainly manual and based on lexico-semantic criteria
which take advantage of the already existing conceptual relations in WordNet.

In some of the experiments reported in this article, we used a coarser-grained
variant of WordNetDomains, called WordNetDomains(42). This was obtained
by Magnini and Cavaglià from WordNetDomains by considering only 42 fairly
general domains (those at the second level in the WordNetDomains tree, see
Table II) and tagging by a given domain ci also the synsets that, in WordNetDo-
mains, were tagged by the domains immediately related to ci in a hierarchical
sense (i.e., the parent domain of ci and all the children domains of ci). For
instance, the domain SPORT is retained into WordNetDomains(42) and labels
the synsets that it originally labeled in WordNetDomains plus the ones that in
WordNetDomains were labeled by its children domains (e.g. VOLLEY, BASKETBALL,
etc.) or by its parent domain (FREE-TIME) which are not retained in WordNetDo-
mains(42). Since FREE-TIME has another child (PLAY) which is also retained in
WordNetDomains(42), the synsets originally labeled by FREE-TIME will now be
labeled also by PLAY and will thus have multiple labels. However, that a synset
may belong to multiple domains is true in general, that is, these domains need
not have any particular relation in the hierarchy.

This restriction to the 42 most significant domains is meant to bring about
a good compromise between the conflicting needs of avoiding data sparseness
and preventing the loss of relevant semantic information. These 42 domains
belong to 5 groups, where the domains in a given group are all the children of
the same WordNetDomains domain, which is, however, not retained into Word-
NetDomains(42). For example, one group is formed by SPORT and PLAY which are
both children of FREE-TIME (not included in WordNetDomains(42)).
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Table II.

Domains Training Terms Test Terms Domains Training Terms Test Terms

ADMINISTRATION 1739 855 LAW 722 382

AGRICULTURE 128 61 LINGUISTICS 568 297

ALIMENTATION 1070 482 LITERATURE 323 180

ANTHROPOLOGY 538 254 MATHEMATICS 249 120

ARCHAEOLOGY 32 15 MEDICINE 1077 573

ARCHITECTURE 1578 730 MILITARY 661 320

ART 889 440 PEDAGOGY 269 149

ARTISANSHIP 49 31 PHILOSOPHY 83 64

ASTROLOGY 21 12 PHYSICS 893 393

ASTRONOMY 181 69 PLAY 514 230

BIOLOGY 3375 1433 POLITICS 569 333

BODY-CARE 72 30 PSYCHOLOGY 993 581

CHEMISTRY 834 397 PUBLISHING 208 101

COMMERCE 368 189 RELIGION 869 405

COMPUTER-SCIENCE 263 89 SEXUALITY 150 72

EARTH 2201 1088 SOCIOLOGY 408 209

ECONOMY 1446 700 SPORT 1002 455

ENGINEERING 372 164 TELECOMMUNICATION 285 130

FASHION 492 182 TOURISM 305 152

HISTORY 619 354 TRANSPORT 983 480

INDUSTRY 496 205 VETERINARY 25 17

The domains in WordNetDomains(42), each with the number of training and test terms occurring at least once in

the full RCV1.

4.3 Structure of the Experiments

Figures 3 to 10 report several experiments run for different choices (i) of the
subset of RCV1 chosen as the corpus θ , (ii) of the set L0 of domain-specific
lexicons, (iii) of the set of documents that act as features in the classification
process, and (iv) of what counts as a feature in this process. We first describe
the structure of a generic experiment and then go on to describe the sequence
of different experiments we run.

In our experiments so far, we have considered only nouns, thereby discard-
ing words tagged by other syntactic types. Nouns are more relevant from an
applicative point of view (e.g. in query expansion) and are probably easier to
classify within domains since they tend to be more domain-specific than, for
example, verbs or adverbs. We plan to also consider words other than nouns in
future experiments.

Before running the experiments, we lemmatize all the documents in the cor-
pus θ and annotate the lemmas with part-of-speech tags, both by means of the
TREE-TAGGER package [Schmid 1994]. We also use the WordNet morphological
analyser in order to resolve ambiguities and lemmatization mistakes. During
this phase, we also recognize multiwords (i.e., terms consisting of more than
one word, such as recording equipment) contained in WordNet. The lemmati-
zation phase allows us to discard all terms belonging to syntactic types other
than nouns.

After this step, we perform a term filtering phase in which we discard:

—all “empty terms”, that is, WordNetDomains(42) terms that, since they are
not contained in any document of the corpus θ , are represented by a vector of
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Fig. 3. Results obtained with the ADABOOST.MHKR learner on subsets of RCV1 corresponding

to one day’s, one week’s, one month’s, and one year’s worth of RCV1 data, and on the lexicons in

WordNetDomains(42). Plots report micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost)

as a function of x which represents the minimal number of documents in which training and test

terms must occur in order to be taken into consideration.

all zeroes. We discard them since (i) empty training terms could not possibly
contribute to learning the classifiers, and (ii) empty test terms could not
possibly be extracted by any algorithm that extracts terms from corpora;

—terms that occur in θ but do not belong to WordNetDomains(42) since they do
not play any role in our experiments.

We repeat each term classification experiment several times by considering
only training and test terms occurring in at least x documents for each value
of x ∈ {1, 5, 10, 15, 30, 60}. Therefore, the curves describing our experiments
all plot F1 as a function of x; each curve in Figures 3 to 10 is the result of six
different experiments (one for each value of x ∈ {1, 5, 10, 15, 30, 60}) since, for
each different value of x, the experiment has to be repeated anew.

We randomly divide the set of the remaining terms into a training set Tr,
consisting of two thirds of the entire set, and a test set Te, consisting of the
remaining third. As negative training examples of category ci, we choose all
the training terms that are not positive examples of ci. Finally, before learning
the term classifiers, we perform a document filtering phase by discarding all
documents that do not contain any term from Tr since they do not contribute
to representing the meaning of training terms and thus could not possibly be
of any help in building the classifiers.

Note that, in this entire process, we do not consider the grouping of terms
into WordNet synsets; that is, the lexical units of interest in our application are
the terms and not the synsets. The reason is that RCV1 is not a sense-tagged
corpus and, since a given WordNet term may belong to more than one synset,
for any term occurrence τ , it is not clear to which synset τ refers.

4.4 The Results

4.4.1 Experiment 1 (The Basic Experiment). In our first set of experiments
(see the curves marked by black stars in Figure 3), we used only a subset
of the RCV1 corpus (about 8% of its total size), corresponding to the news
stories produced in an entire month (1 Nov 1996 to 30 Nov 1996, 67,953
documents) with the purpose of getting a feeling for the dimensions of the
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Table III.

x πμ ρμ F μ

1
π M ρM F M

1

1 0.705 0.043 0.081 0.717 0.023 0.045

5 0.735 0.064 0.118 0.793 0.032 0.061

10 0.737 0.077 0.140 0.774 0.035 0.066

15 0.755 0.085 0.153 0.812 0.036 0.068

30 0.763 0.101 0.178 0.843 0.042 0.081

60 0.757 0.117 0.203 0.836 0.044 0.084

Results (both micro- and macro-averaged) obtained on the automated lexi-

con generation task with the ADABOOST.MHKR learner on a subset of RCV1

corresponding to one month’s worth of RCV1 data.

problem that need investigation. For the same reason, in this set of experi-
ments, we used only a small number of boosting iterations (500). There are
16,790 terms in WordNetDomains(42) after the term filtering phase described in
Section 4.3.

The results in Figure 3 show a constant and definite improvement when
higher values of x are used, despite the fact that, as we found, higher levels
of x mean a higher degree of polysemy, that is, a higher average number of
labels per term (e.g., this increases from 1.66 for x = 1 to 2.25 for x = 60)
which tends to confuse a learning device. This behavior is not surprising since
when a term occurs, for example, in one document only, this means that only
one entry in the vector that represents the term is nonnull (i.e., significant);
this means that the vector representation of this term is scarcely significant6.
This is in sharp contrast to what happens in text categorization in which the
number of nonnull entries in the vector representing a document equals the
number of distinct terms contained in the document and is usually at least in
the hundreds.

As shown in Table III, the low values obtained for F1 are mostly the result
of low recall values, while precision tends to be much higher. For instance, the
F μ

1 value of .203 obtained for x = 60 is the result of the values πμ = .760

and ρμ = .117. One way of improving F1 could be tuning ADABOOST.MHKR so
as to increase recall at the expense of precision since F1 is maximized when
precision equals recall. Although this would be easy (e.g., by using the simple
utility-theoretic technique described in Schapire et al. [1998] which consists in
altering the initial distribution on which ADABOOST.MHKR relies), we did not
pursue this line of work for the simple reason that it would not bring interest-
ing insights into the problem. That our F1 values result from the combination
of low recall and high precision values is true throughout the experiments de-
scribed in the next pages. We conjecture that this is due to the following fact.
In term (and text) categorization, unlike in many other machine learning ap-
plications, the number of negative examples of a given category ci is usually
overwhelmingly higher than the number of its positive examples (e.g., there

6By contrast, a fairly common term may have thousands of nonnull entries in the vector that

represents it. This means that, in this application, the variance of the sparseness of the different

vectors is tremendously high. This problem alone might deserve further investigation since this

situation is rather unique within the field of vectorial representations.
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are far fewer terms belonging to the domain AGRICULTURE than terms not be-
longing to it). If we use accuracy (the converse of error, i.e., A = 1 − E) as a
measure of effectiveness, it will be very easy to generate an “effective” classifier
since we simply need to generate the classifier that assigns every item dj to ci

(the trivial rejector); in this way, the very few positive examples will have been
misclassified, while the very many negative examples will have been correctly
classified. This means that, when we use accuracy or error as the effectiveness
measure that guides the learning process in boosting (or other learning mecha-
nisms based on explicit effectiveness maximization) in this kind of application,
we end up with a classifier that tends to behave like the trivial rejector, that is,
it emphasizes precision at the expense of recall. Note, in fact, that the trivial
rejector has maximum precision (since it never wrongly classifies a document
under ci) but minimum recall (since it never correctly classifies a document un-
der ci). In sum, relying, as we did, on a learning device based on explicit error
minimization (as ADABOOST.MHKR is) inevitably means generating classifiers
with very high precision but very low recall.

In all the experiments that follow, we used the previously described set of ex-
periments as a sort of baseline, testing whether modifying our approach along
one or the other dimension of the problem could bring about a significant per-
formance improvement. Note that, although the set of documents considered
in the previous set of experiments is a subset of RCV1, it is a quite sizeable
one, since it consists of 67,953 documents (more than 5 times the documents
of the Reuters-21578 collection, a popular benchmark of text categorization
research).

The following sections discuss the various dimensions of the problem that
we explored.

4.4.2 Experiment 2 (Using the Full RCV1). In our next set of experiments,
we run our system on the entire set of 806,812 RCV1 documents (this means
27,048 terms left in WordNetDomains(42) after term filtering) since we wanted
to test whether performance can be improved by increasing significantly the
number of documents from which terms have to be extracted. That this should
happen might seem a plausible hypothesis since more documents mean, on
average, a higher number of occurrences per term (on average, a training term
occurs in 135.59 different documents in the “one month” set of experiments and
1,201.87 documents in the “one year” set of experiments), hence a more reliable
indication of the typical contexts in which a given term occurs.

The results of this set of experiments (reported in Figure 3) indicate that
this is not the case, since in going from 67,953 documents to 806,812 docu-
ments performance deteriorates. This trend resulting from the comparison of
experiments run on one year’s and one month’s worth of documents is confirmed
by two other sets of experiments we run using one week’s (1 Nov 1996 to 7 Nov
1996, 16,003 documents) and one day’s (1 Nov 1996, 2,689 documents) worth
of documents (on average, a training term occurs in 46.45 different documents
in the “one week” set of experiments and in 13.88 in the “one day” set of exper-
iments). Altogether, the four sets of experiments clearly show that the fewer
the documents, the better the performance.
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Fig. 4. Ratio between the number of training terms and the number of documents considered as

a function of the x parameter.

A clear explanation of this fact is that increasing the number of documents
produces a sharp decrease in the ratio between the number of training objects
and the number of features that describe these objects (see Figure 4), a ratio
that is conceptually akin to the one between the constraints of a problem and the
number of its free variables. In other words, using the full RCV1 brings about an
underconstrained problem, and the classifier tends to overfit the training data.

In future experiments, we plan to use even smaller numbers of features in
order to determine the optimal number of features one should work with.

4.4.3 Experiment 3 (Using Document Selection). Our next set of experiments
was aimed at verifying whether it might be the case that performance is
depressed by RCV1 containing too many documents that are not significant
enough in determining the meaning of our terms. These experiments consisted
in first applying a pass of feature selection (in our case, document selection)
aimed at choosing, from the 806,812 documents of RCV1, the ones that are the
best discriminators between the presence and the absence of a domain, and
then using the shortened term representations in which only the selected doc-
uments are retained as dimensions. Feature selection is often used by scoring
each feature by means of a function that evaluates the capability of the feature
at discriminating between the presence and the absence of a domain. In text
categorization, Yang and Pedersen [1997] have shown that information gain,
defined as

IG(tk , ci) =
∑

c∈{ci ,ci}

∑
t∈{tk ,tk}

P (t, c) · log
P (t, c)

P (t) · P (c)
(8)

is one of the most effective such scoring functions. However, as specified in
Equation (8), information gain evaluates the feature tk with respect to a specific
category ci; in order to assess the value of a feature tk in a global, category-
independent sense, a globalization technique such as the maximum IGmax(tk) =
maxm

i=1 IG(tk , ci) of its category-specific values might be adopted.
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Fig. 5. Results obtained with the ADABOOST.MHKR learner on the lexicons in WordNetDomains(42)

and various amounts of documents selected from RCV1 via feature selection based on information

gain.

In these experiments, we scored each RCV1 document by means of IGmax

and retained only the top-scoring documents. In a first set of experiments, we
retained the top 67,953 documents, corresponding to 8.72% of the original doc-
uments. This is exactly the same number of documents that were used in the
“one month” set of experiments of Section 4.4.1 and was chosen in order to
test what increase in performance (if any) could be achieved by replacing a
set of k documents with a set of k “good” documents. For the same reason,
our second set of experiments was run with the 16,084 top-scoring documents
(corresponding to 2.06% of the original documents) and our third one with the
2,695 top-scoring documents (0.35% of the original documents), thus using ex-
actly the same numbers of documents as used in the “one week” and “one day”
experiments of Section 4.4.2.

The first observation (see Figure 5) is that each of these new sets of exper-
iments produces an improvement with respect to the “one year” set of exper-
iments of Section 4.4.2; the best performance was obtained with 0.35% of the
original documents and the worst with 8.72%. However, at this point, it is not
clear whether this benefit is due to feature selection or simply to the trend al-
ready noticed in Section 4.4.2, according to which smaller numbers of features
tend to produce better results. In order to determine this, in Figure 6, we com-
pare the performance obtained by using s “random” documents (as from the
experiments of Sections 4.4.1 and 4.4.2) with that obtained by using s “good”
documents (i.e., obtained through feature selection), where s ranges on the set
{67,953; 16,084; 2,695}.

Here results are more difficult to explain since it seems that feature selection
is really helpful for low values of the x parameter (e.g., for x = 1, performance
is always much higher when feature selection was performed), while it is detri-
mental for high values of x (e.g., for x = 60 performance is always higher when
feature selection was not performed). The improvement for the low values of x
is easy to explain since classification theory tells us that s highly discriminat-
ing features are better than s random features when discrimination power is
measured with respect to the target categories. The decrease in performance
for the high values of x is more difficult to explain. We conjecture that this
might be due to the fact that the experiments run in Sections 4.4.1 and 4.4.2
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Fig. 6. Results obtained with the ADABOOST.MHKR learner on the lexicons in WordNetDomains(42);

each figure illustrates the difference between using s random documents and using s documents

obtained via feature selection based on information gain ((top): s = 67,953; (mid): s = 16,084;

(bottom): s = 2,695).

do not really use s random documents since these documents are temporally
coherent, that is, they form a subinterval of the year being considered. Since
the same subinterval typically contains several news stories about the same
event, this means that, when a term occurs in several temporally coherent doc-
uments, there is a high chance that most if not all these occurrences pertain
to the same sense (i.e., the degree of polysemy is reduced) and thus are more
helpful in determining the domains of the words with which they co-occur. In
order to clarify this aspect, in the future, we intend to run further experiments
on the monosemic portion of WordNet.

4.4.4 Experiment 4 (Using Sentences Instead of Documents). In our next
set of experiments, we reverted to the original set of 67,953 documents of Sec-
tion 4.4.1 and tested whether sentences can be better features than full doc-
uments in term categorization. That this might be the case is plausible since,

ACM Transactions on Speech and Language Processing, Vol. 3, No. 1, May 2006.



18 • H. Avancini et al.

Fig. 7. Results obtained with the ADABOOST.MHKR learner on the lexicons in WordNetDomains(42);

each figure illustrates the difference between using 67,953 random documents, using all the sen-

tences obtained by segmenting these 67,953 random documents, and using 67,953 sentences ob-

tained from these latter via feature selection based on information gain.

given that (as observed in Section 2.2) our approach fundamentally relies on
term co-occurrence, identifying the context in which co-occurrence is most sig-
nificant is important. And it might be plausible to believe that the longer the
context, the less significant the co-occurrence of two terms is in indicating that
they belong to the same domain.

We run this set of experiments by segmenting each of the 67,953 documents
into sentences (i.e., using the full stop as separator) and considering each of the
resulting 714,352 sentences as a feature. (We did not run an experiment using
paragraphs instead of sentences, that is, using a carriage return as the sepa-
rator since most paragraphs in RCV1 documents consist of single sentences.)
However, if we use all 714,352 sentences, we substantially decrease the ratio
between the number of objects and the number of features that describe these
objects, which means that, according to the observations of Section 4.4.2, our
performance will likely decrease. In fact, this turns out to be the case, as shown
in Figure 7.

As a result, we performed a further experiment in which we apply fea-
ture selection to the 714,352 sentences until we obtain a set of 67,953 top-
scoring sentences. This is the same number of documents that was contained
in the set of documents resulting from feature selection in the experiments of
Section 4.4.3; we deliberately chose this number since we wanted to check if s
good sentences are better than s “good” documents at discriminating domains.

The results (reported in Figure 7) seem to indicate that, for very aggressive
feature selection, that is, when we retain only very few features, sentences are
largely better features than documents, while this advantage tends to disappear
for less aggressive levels. Note also that, in the former situation, performance is
remarkably stable across all values of x, indicating that this setting is especially
suitable for the situations in which one might want to extract very rare words.

This result seems consistent with an observation by Sahlgren [2004] who
conjectures that co-occurrence within shorter linguistic contexts tends to be
more indicative of true synonymy (or quasisynonymy), while co-occurrence in
larger contexts tends to be more indicative of what he calls “topical relatedness”
which is exactly our notion of a term being domain-specific.

ACM Transactions on Speech and Language Processing, Vol. 3, No. 1, May 2006.



Automatic Expansion of Domain-Specific Lexicons by Term Categorization • 19

Fig. 8. Results obtained with the ADABOOST.MHKR learner on one month’s worth of RCV1 data

and the lexicons either in WordNetDomains(42) or WordNetDomains with documents as textual

units.

4.4.5 Experiment 5 (Augmenting the Number of Boosting Iterations). In
our next set of experiments, we reverted to the full RCV1 with no feature se-
lection and to using full documents instead of sentences and tested whether
augmenting the number of ADABOOST.MHKR iterations could improve the per-
formance significantly. The results of this set of experiments have been fairly
encouraging since, for x = 1, the value of F μ

1 increases from .068 (for 500 it-
erations) to .099 (1500 iterations) to .116 (2500 iterations). This improvement
is due to a sharp increase in recall, while precision stays basically constant.
We plan to explore this dimension of the problem more thoroughly in future
experiments.

4.4.6 Experiment 6 (Using the Full WordNetDomains). In a further set of
experiments, we reverted to the standard number of 500 iterations, and we used
the full WordNetDomains instead of its subset WordNetDomains(42); this actu-
ally means using 145 domains, and not the full set of 164 domains that make up
WordNetDomains, since 19 domains from WordNetDomains consist only of terms
than never occur in RCV1 and thus have to be removed from consideration.

The aim of this set of experiments was testing whether the switch to
more granular domains would improve or deteriorate the performance. An
improvement of performance would be plausible on the grounds that the
data these more granular domains contain are more significant since they
are more focused. For instance, while the terms contained in the WordNetDo-
mains domain BASEBALL are all focused on baseball, the terms contained in the
WordNetDomains(42) domain SPORT are more heterogeneous since they pertain
to different sports. On the other hand, a deterioration in performance would
also be plausible on the grounds that the more granular domains are more
data-sparse, and less training data usually means worse performance.

The results were somehow inconclusive, as shown in Figure 8: by working
on the full WordNetDomains, F μ

1 deteriorates while F M
1 improves. This clearly

indicates an improvement in classification effectiveness over low-frequency cat-
egories and a deterioration in classification effectiveness over high-frequency
categories.
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Fig. 9. Comparison of the results obtained on one month’s worth of RCV1 data with the

ADABOOST.MHKR learner and with SVMLIGHT.

4.4.7 Experiment 7 (Switching to a Different Learner). In order to check
how dependent our results are on the choice of ADABOOST.MHKR as learner, we
performed a set of experiments in which ADABOOST.MHKR is replaced by a sup-
port vector machine (SVM) learner implemented in the SVMLIGHT package (ver-
sion 3.5) [Joachims 1999], a well-known top performer of the text categorization
field. SVM is a method that attempts to learn a hyperplane in |T |-dimensional
space that separates the positive training examples from the negative ones
with the maximum possible margin, that is, such that the distance between
the hyperplane and the training examples that are closest to it is maximum.
Results in computational learning theory indicate that this tends to minimize
the generalization error, that is, the error of the resulting classifier on yet un-
seen examples. We simply opted for the default parameter setting of SVMLIGHT,
both for efficiency reasons and in order to set a baseline for further work; in
particular, this means that a linear kernel was used. As in the case of boosting,
as negative training examples of domain ci, we chose all the training terms that
are not positive examples of ci. For better comparability with ADABOOST.MHKR,
we run the same experiments as run with ADABOOST.MHKR on one month’s
worth data (days from 01.11.1996 to 30.11.1996) with the same values of x as
tested in the experiments of Figure 3.

As shown in Figure 9, SVMLIGHT did not prove better than ADABOOST.MHKR.
Actually, the performance of SVMLIGHT is almost uniformly worse than that
of ADABOOST.MHKR, particularly in the experiments with high values of x, and
especially for macroaveraged effectiveness. However, we should note that the
region on which SVMLIGHT performs better than ADABOOST.MHKR (namely, the
low values of x) is an important one since these are the terms that occur quite
infrequently, and, by virtue of this, they may be the most important ones to
extract automatically since they are the ones that a lexicographer might easily
miss when manually generating a lexicon.

This is yet another confirmation that the lexicon expansion task is a hard
one since SVMs have been top performers in practically every machine learning
application they have been used in, including text categorization.

As in the case of boosting, here too, our F1 values are the result of low recall
and high precision. Again, the fact that SVMs are inherently biased towards
error minimization (see Section 4.4.1) seems the likely cause for this fact.
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4.4.8 Experiment 8 (Switching to a Different Representation). In order to
check how dependent our results are on the choice of the representation of terms
discussed in Section 2.2, we performed a final set of experiments in which an al-
ternative representation for terms was used. This representation, which we will
call the term co-occurrence representation (in order to contrast it with the term
occurrence representation of Section 2.1 and the document occurrence repre-
sentation of Section 2.2), represents a term t j by a vector �t j = 〈w1 j , . . . , wr j 〉 of
weighted terms, where r is the cardinality of the dictionary (i.e., the set of terms
that occur at least once in at least α documents of Tr, see Section 2.1 for com-
parison purposes), and the weight 0 ≤ wkj ≤ 1 represents, loosely speaking, the
degree of semantic association between t j and tk as measured by the frequency
with which they co-occur in the documents (note that it is always the case that
wjj = 1, but the practical effect of this fact is irrelevant). This representation
is quite popular in the computational linguistics literature (see Dagan [2000]
for a review) where it has been used for various purposes including word-sense
disambiguation [Gale et al. 1993], the extraction of lexical collocations [Smadja
1993], and the extraction of syntactic relationships [Dagan et al. 1995].

Similar to the case of the term/text occurrence representations, several al-
ternative weighting functions may be used. Here we rely again on a normalized
tfidf -like weighting function, analogous to the one discussed in Section 2.2.

—The tf (tk , t j ) component of weight wkj is now the number of documents in
which tk and t j co-occur. This component emphasizes the weight of terms tk

that often co-occur with the term t j we want to represent.

—The idf (tk) component of weight wkj is the logarithm of the ratio between
the size of the vocabulary and the number of different terms in the vocabu-
lary with which tk co-occurs at least once. This component de-emphasizes
the weight of terms tk that tend to occur with many other terms and
whose co-occurrence with the term t j we want to represent is thus less
significant.

—The final weight wkj is obtained by cosine-normalizing the results of the

previous two steps, that is, wkj = tf (tk , t j ) · idf (tk)√∑r
s=1(tf (ts, t j ) · idf (ts))2

.

The results of these experiments, which we have run with both
ADABOOST.MHKR and SVMLIGHT as learners, are reported in Figure 10. It can be
seen that the term co-occurrence representation performs better. We think the
reason may be due to the fact that this representation captures some phenom-
ena related to semantic similarity better than the document occurrence repre-
sentation. For instance, two perfect synonyms t1 and t2 may be represented by
fairly dissimilar vectors according to the document occurrence representation
since an author might typically use, in a given document, either the one or the
other term, but not both, for better consistency. If all authors used this policy,
t1 and t2 would never co-occur in the same document, hence yielding two highly
different vectors. This need not be a problem with the term co-occurrence rep-
resentation since the two terms need not frequently co-occur with each other in
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Fig. 10. Comparison of the results obtained with ADABOOST.MHKR (top) and SVMLIGHT (bottom)

on one month’s worth of RCV1 data with the standard document occurrence representation and

the term co-occurrence representation.

order to be represented by highly similar vectors: they only need to frequently
co-occur with the same terms, and this can plausibly happen given their perfect
synonymy.

4.5 Comparison to Closely-Related Results

Note that in this article, we present no baseline, either published or new, against
which to compare our results for the simple fact that there are no previous
results in terms of both precision and recall on the term categorization task as
we conceive it here.

To our knowledge, only Riloff and Shepherd [1999], Roark and Charniak
[1998], and Thelen and Riloff [2002] have approached the problem of extending
a domain-specific lexicon with new terms drawn from a text corpus. However,
there are key differences between their evaluation methodology and ours which
make comparisons problematic and unreliable.

First, their training terms (which they call seed words) have not been chosen
randomly from a domain-specific dictionary but have been carefully selected
through a manual process by the authors themselves. For instance, Riloff and
Shepherd [1999] choose words that are “frequent in the domain” and that are
“(relatively) unambiguous”. Of course, their approach makes the task easier
since it allows the best terms to be selected for training.

Second, Riloff and Shepherd [1999] and Roark and Charniak [1998] extract
the terms from texts that are known to be strongly related to several among
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the domains of interest7 which makes the task easier than ours. Conversely,
by using generic texts, (i) we can also expand domains for which no collection
of texts is available, and (ii) we are able to expand domain-specific lexicons for
(any set of) multiple domains in parallel from the same unlabeled text corpus,
a task that, to the best of our knowledge, has never been investigated.

Third, the evaluation methodology of Riloff and Shepherd [1999] and Roark
and Charniak [1998] is manual and a posteriori, in the sense that the authors
themselves manually check the results of their own experiments, judging for
each returned term how reasonable the inclusion of the term in the lexicon is.
This contrasts with our evaluation methodology which is completely automatic
(since we measure the proficiency of our system in discovering terms about the
domain by the capability of the system to replicate the lexicon generation work
previously performed by a lexicographer) and as such allows the experiments
to be replicated by other researchers.

Fourth, checking one’s results for reasonableness, as Riloff and Shepherd
[1999] and Roark and Charniak [1998] do, means that one can only (a poste-
riori) measure precision (i.e., whether the terms spotted by the algorithm do
in fact belong to the domain), but not recall (i.e., whether the terms belonging
to the domain have actually been spotted by the algorithm). Again, this is in
contrast with our methodology which (a priori) measures precision, recall, and
a combination of them. Also, note that in terms of precision, the only measure
that Riloff and Shepherd [1999] and Roark and Charniak [1998] (a posteriori)
compute, our algorithm fares very well, mostly scoring higher than 70% (see
Section 4.4.1)8.

Aside from methodological issues, we should also note that our experiments
are much larger in size that the ones presented in the quoted works. For in-
stance, Thelen and Riloff [2002] work with about 1,700 texts, while we work
with about 806,000; they report results on 6 domains, while we report on 42 or
145.

4.6 Why is Term Categorization Harder Than Text Categorization?

A fundamental observation that can be made from the results of our experi-
ments is that the F1 scores are much lower than the ones usually obtained in
text categorization, even if using the same kind of “extensional representation
+ supervised learning” approach and the same top-performing learners. It is
well known, for instance, that the very same SVM learner we have used in our
experiments obtains microaveraged F1 scores higher than .80 on the very same
corpus (RCV1) we have used [Ault and Yang 2001; Lewis et al. 2004]. It is true
that the set of classes used in these latter experiments is different from the ones

7The texts used here are the MUC-4 corpus which contains texts about terrorism. Categories of

interest are, among others, MILITARY, TERRORIST, WEAPON.
8Thelen and Riloff [2002] also present recall figures for their experiments. However, their gold stan-

dard is not given by the set of all correctly classified terms but by the set of correctly classified terms

extracted in a preprocessing phase by a term extraction algorithm. This set might thus not contain

all terms, and might contain nonterms, which means that in principle their measure is not true

recall. Also, they do not specify whether their recall figures are microaveraged or macroaveraged.
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we have used in ours, but this fact alone cannot by itself justify such a large
difference in performance. In other words, it is evident that term categorization
is a harder task than text categorization.

Why this is so is not immediately clear, since the metaphor according to
which the meaning of a text “coincides” with the terms it contains (a metaphor
that has proven so successful in text categorization) is in principle no more
powerful or intuitive than the dual metaphor according to which the meaning of
a term “coincides” with the texts it is contained in (or with the similar metaphor
according to which the meaning of a term “coincides” with the set of words it
co-occurs with, as used in the experiments of Section 4.4.8).

We conjecture that the substantial difference in performance between the
text and term categorization cases might be due to the fact that, while in text
categorization there are often features with very high discriminative power, this
does not seem to be the case for term categorization. To realize this, consider
that in text categorization a perfect discriminator for category ci is a term that
occurs in all positive examples of ci and never occurs in any negative examples
of ci. That such a perfect discriminator might exist in a real text categoriza-
tion application is difficult but not impossible (when RCV1 is used as a text
categorization collection, there are categories that have almost perfect discrim-
inators). In our document occurrence representation for the term categorization
task, a perfect discriminator for category ci is a document in which all terms
belonging to ci occur and in which no term not belonging to ci occurs. That
such a perfect discriminator might exist seems not only difficult but plainly
impossible since, when in natural language we want to state even the simplest
fact about ci, we also need terms which are not about ci in order to express our
thoughts. It is also evident that good discriminators for the term categoriza-
tion task (i.e., documents that contain most terms belonging to ci and contain
only a few terms not belonging to ci) will be extremely rare. Similar arguments
can be made for the term co-occurrence representation we have used in the
experiments of Section 4.4.8.

In order to have a more direct proof of this fact, we have computed, for our
three extensional representations, the absolute values of the information gain
function (globalized by means of the fmax method, as usual) for the features
that score highest in terms of such a function. The results, which are computed
on the entire RCV1 corpus of documents, are plotted in Figure 11. From the
figure, we can see that on average a feature of the term occurrence represen-
tation (as used in text categorization) has a value of an order of magnitude
higher than the feature of the same rank in the document occurrence represen-
tation (as used in term categorization). The term co-occurrence representation
of Section 4.4.8 gives improved results with respect to the document occurrence
representation, thus confirming the impression that it might be a better repre-
sentation than document occurrence for term categorization applications. How-
ever, its results are of the same order of magnitude as the document occurrence
representation.

Since information gain is a direct measure of the discriminative power
of a feature, this comparison (although, as remarked earlier, not en-
tirely fair because of the difference between the two category sets) is
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Fig. 11. Comparison of the absolute values of the information gain function for features in the

term occurrence representation (as used in text categorization), in the document occurrence rep-

resentation, and in the term co-occurrence representation (as used in term categorization) as a

function of the rank of such features. The results are reported for the 100 top-scoring features only.

significant enough to indicate how much harder than text categorization term
categorization is9.

5. RELATED WORK

The automated generation of lexicons from text corpora has a long history,
dating back at the very least to the seminal works of Lesk [1969], Salton [1971],
and Spärck Jones [1971] and has been the subject of active research throughout
the last 30 years both within the IR community [Crouch and Yang 1992; Jing
and Croft 1994; Qiu and Frei 1993; Ruge 1992; Schütze and Pedersen 1997]
and the NLP community [Grefenstette 1994; Hirschman et al. 1988; Riloff and
Shepherd 1999; Roark and Charniak 1998; Tokunaga et al. 1995]. Most of the
lexicons built by these works come in the form of clustered thesauri, that is,
graphs in which nodes are groups of synonymous or quasisynonymous words,
and edges connecting the nodes represent semantic contiguity. Most of these
approaches follow the basic pattern of (i) measuring the degree of pairwise
similarity between the words extracted from a corpus of texts, and (ii) clustering
these words based on the computed similarity of values.

Step (i) requires terms to be given explicit (i.e., vectorial) representations
so that similarity between them can be computed. For this, the two term rep-
resentations we have tested in the experiments of Section 4.4.8, one in which
the documents that contain the terms are the features [Crouch 1990; Crouch
and Yang 1992; Qiu and Frei 1993; Schäuble and Knaus 1992; Sheridan and
Ballerini 1996; Sheridan et al. 1997] and the other in which the co-occurring

9Note also that the performance of our experiments may also have been negatively influenced by the

imperfect quality of the WordNetDomains resource which was generated by a combination of auto-

matic and manual procedures and did not undergo extensive manual checking afterwards [Magnini

and Cavaglià 2000].
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terms are the features [Schütze 1992; Schütze and Pedersen 1997], can be alter-
natively chosen. The first representation is based on first-order co-occurrence
(i.e., two terms are considered similar when they frequently co-occur with each
other), while the latter is based on second-order co-occurrence (i.e., two terms
are considered similar when they frequently co-occur with the same terms).
Variants of this latter approach are obtained by restricting the context of co-
occurrence from the document to the paragraph, or to the sentence, or to a
sliding, fixed-size window of text centred around the focus term [Lund and
Burgess 1996]. Other authors reinterpret the notion of co-occurrence as mean-
ing something different from the mere simultaneous presence of the two terms
in the same text window. For instance, Lin [1998] and Pantel and Lin [2003]
represent term t j by vectors of pairs (tk , rk), where tk is a term that co-occurs
with t j in some sentence, and rk is the grammatical relationship between t j

and tk in this sentence; in this way, syntactic knowledge is brought to bear in
what is otherwise an essentially knowledge-free approach.

When the lexical resources being built are domain-specific, whether a word
belongs or not to the domain of interest is usually established by checking
whether its frequency within documents belonging to the domain is higher than
its frequency within generic documents [Chen et al. 1996; Riloff and Shepherd
1999; Schatz et al. 1996] (this property is often called salience [Yarowsky 1992]).
This literature has thus taken an approach which can be summarized in the
recipe “from a set of documents about domain ci and a set of generic docu-
ments (i.e., mostly not about ci) extract the words that mostly characterize ci

(and organize them into a thesaurus)”. Our work is different, in that its un-
derlying supervised approach requires a starting kernel of terms about ci but
does not require that the documents from which the terms are extracted be la-
beled according to the domains under consideration. This makes our technique
particularly suitable for extending a previously existing domain-specific lexical
resource, while the previously known unsupervised techniques tend to be more
useful for generating one from scratch. This suggests an interesting methodol-
ogy of (i) generating a domain-specific lexical resource by some unsupervised
technique, and then (ii) extending it by our supervised technique.

As anyone involved in applications of supervised machine learning knows,
labeled resources are often a bottleneck for learning algorithms since labeling
items by hand is expensive. Concerning this, note that our technique is advan-
tageous since it requires an initial set of labeled terms only in the first iteration
of the expansion process, that is, for generating L1 from L0. Once a lexical re-
source has been extended with new terms, extending it further only requires a
new unlabeled corpus of documents but no other labeled resource. This is dif-
ferent from the techniques described previously, which require, for extending a
lexical resource that has just been built by means of them, a new labeled corpus
of documents.

One advantage of our approach is that it solidly rests on the strong theoretical
bases of indexing theory and supervised learning theory. It is also a minimalist
approach in the sense that nothing other than an indexing tool and a supervised
learning tool are needed for it; indexing tools and supervised learning tools
different from the ones used here can be plugged in and out in a straightforward
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manner. The approaches adopted in Riloff and Shepherd [1999], Roark and
Charniak [1998], and Thelen and Riloff [2002], which have been discussed in
more detail in Section 4.5, are also supervised (in the sense that they require the
presence of training terms) but rest on heuristic pattern extraction techniques
and scoring functions rather than on general supervised learning techniques.
Also, the approaches presented in the quoted works have been tested only on
texts which are at least loosely connected with several among the domains of
interest; it remains to be seen how their techniques would work on corpora
unrelated to the domains.

6. CONCLUSION AND DISCUSSION

We have reported an approach to the automatic expansion of domain-specific
lexicons by the combination of (i) a dual interpretation of IR-style text index-
ing theory and (ii) a supervised learning approach. This approach allows the
extraction of domain-specific terms from domain-generic texts. The advantages
of our method are that it is particularly suited (i) to the situation in which
several domain-specific lexicons need to be extended in parallel and (ii) to the
case in which no labeled text corpora are available, and that it does not require
preexisting semantic knowledge.

We have exemplified our approach by running experiments in which we si-
multaneously expand a large number of domain-specific lexicons (up to 145)
by extracting new terms from a large number of domain-generic texts (up
to 806,812). These experiments have been run by using widely available re-
sources (the WordNetDomains set of domain-specific lexicons and the RCV1
corpus) and standard evaluation measures (precision and recall); this means
that our results constitute a useful experimental setting and a baseline for
other researchers to improve upon. We also hope that this study will encour-
age researchers to adopt for the lexicon expansion task the a priori evaluation
methodology exemplified here.

Our experiments suggest that our approach is viable, although large mar-
gins of improvement still exist: F1 values are still low, at least if compared
to the F1 values that have been obtained in text categorization research on
the same corpus, so work is still needed in tuning this approach in order
to obtain significant categorization performance. One obvious direction is to
combine all the parameter settings that we have found to work best in in-
dividual experiments that explored individual facets of the problem (e.g., us-
ing a small number of texts, a fine-grained set of domains, a high number
of boosting iterations, etc., at the same time), but many other directions ex-
ist. Even so, we have provided a theoretical argument which explains why
we cannot hope to obtain for this term categorization task effectiveness val-
ues comparable to the ones which are routinely obtained in text categorization
experiments.

To date, we have run experiments consisting of only one iteration of the
expansion process. In future experiments, we also plan to allow for multiple
iterations in which the system learns new terms from previously learned ones
(similarly to the approach adopted in Riloff and Shepherd [1999] and Thelen and
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Riloff [2002]). This is quite reasonable since our system displays a high precision
(usually above .70) which tends to guarantee that it is safe for our system to
learn from terms it has itself learned in the previous iterations. The very fact
that our system has proven to perform best when fed with small quantities of
text (e.g., a day’s worth of newswire stories) thus suggests a simple strategy of
performing many iterations of the process, each time using a small quantity of
text.
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