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Abstract

Propositional systems of default inference ba-
sed on the dyadic relation of preference between
models have recently been proposed by Selman
and Kautz to provide a computationally tracta-
ble mechanism for the generation of vivid kno-
wledge bases. In this paper we argue that the
formalism proposed, albeit endowed with a se-
mantic flavour, is not a model-theoretic (or de-
notational) semantics, as no ontology which is
independent of the existence of the knowledge
representation language is postulated. Consi-
stently with good model-theoretic practice we
carry on to postulate a language-independent
ontology and to use it in the subsequent de-
finition of a fully model-theoretic semantics
for model-preference default systems. This se-
mantics is instrumental in providing guidelines
for the development of algorithms that reason
on model-preference default systems, and for
comparing this with other “preferential” non-
monotonic formalisms recently proposed in the
literature.

1 Introduction

Default inference plays an important role in everyday
practical reasoning1. Agents, be they natural or artifi-
cial, typically face situations in which they have to act
and make decisions on the basis of a body of knowledge
that is far from being an exhaustive description of the
domain of discourse; their lack of such a description is
a direct consequence of the limited throughput of their
channels of communication with the external world (e.g.
the visual apparatus), of the fact that the processes in-
volved in the acquisition of knowledge (both from ex-
ternal sources—e.g. books—and internal ones—e.g. spe-
culative reasoning) are computationally demanding and

1Sections 1 and 2 draw from material first presented in
[16].

time consuming, and, above all, of the fact that the re-
levant information simply may not be available to the
agent.

Nevertheless, action and decision-making is often so
complex to require more than the knowledge the agents
actually possess; this forces them to overcome the limi-
ted coverage of their knowledge bases (KBs) by making
“default” assumptions which are then brought to bear in
the reasoning task. As the name implies, “assumptions”
are items of knowledge endowed with an epistemic status
that is far from being solid: that is, they can be invalida-
ted by further reasoning or by the subsequent acquisition
of empirical data. These phenomena are well-known in
cognitive science, and their lack of resemblance with de-
ductive patterns of reasoning has sometimes been taken
to imply that a great deal of human reasoning does not
conform to the canons of “logic” and hence is not ame-
nable to formalization [4].

Doubtless, the overall effectiveness of human action in
the face of incomplete information testifies to the effec-
tiveness of this modality of reasoning. In fact, humans
are much quicker at creating surrogates of missing kno-
wledge than at actually acquiring that knowledge in a
more reliable way, either through reasoning or empirical
investigation, and have the ability to generate plausible
surrogates, surrogates that in most occasions turn out to
be accurate predictions of the actual reality. Once these
surrogates have been created, humans are also much
quicker at reasoning on the resulting exhaustive, albeit
“epistemically weaker”, description of the domain of di-
scourse than they would be if they had to rely on the
smaller part of this description that they trust as accu-
rate tout court. These observations are at the heart of
the recent interest that the KR community has shown
in vivid knowledge bases [2, 8, 9], i.e. exhaustive descrip-
tions of the domain of discourse consisting of collections
of atomic formulae2. Reasoning on these KBs, which

2In formally introducing vivid KBs Levesque [8] actually
situates his discussion in the framework of the first order pre-
dicate calculus; hence, for him a vivid KB is “a collection of
ground, function-free atomic sentences, inequalities between
all different constants (. . . ), universally quantified sentences



       

may be considered as “analogues” of the domain being
represented, is easily shown to be efficient.

It is precisely in the face of the above-mentioned empi-
rical considerations that the bad computational proper-
ties of current formalisms that address default reasoning
(such as the ones based on Circumscription [10, 11] or
on Autoepistemic Logic [5, 12]) are particularly distur-
bing: arguably, a formalism for default reasoning not
only should characterize the class of conclusions that
agents draw in the presence of incomplete information,
but should also possess radically better computational
properties than formalisms accounting for the reasoning
tasks at which humans are notoriously inefficient (such
as e.g. classical logic in the case of deductive reasoning).

These considerations have lead researchers to look
with special interest at formalizations of default reaso-
ning that emphasize computational tractability. In their
recent paper “The complexity of model-preference de-
fault theories” [17], Selman and Kautz describe DH+

a ,
a tractable system for performing inferences on acyclic
theories of Horn defaults; in this system a vivid, com-
plete KB may be obtained in polynomial time from an
acyclic theory of Horn defaults. This tractability result
accounts for what both intuition and empirical evidence
suggest, namely, that in order to overcome the computa-
tional problems associated with practical reasoning and
obtain KBs upon which subsequent reasoning can be car-
ried out efficiently, humans must use a method that is
itself efficient. The framework described in [17], quite
similarly to other recent proposals [1, 15, 18], has the ad-
ded appeal of possessing a model-theoretic flavour. Ho-
wever, such a framework is nevertheless a mix of different
notions some of which pertain to the semantic level and
some of which to the syntactic one, and does not com-
pletely live up to its promise of offering a “true semantic
characterization of default inference”.

In this paper we give an account of model-preference
default systems that, while licensing the same set of
inferences of the system described in [17], is also a
fully model-theoretic (or denotational) semantics. Gi-
ving one’s language a semantics that conforms to model-
theoretic practice has several benefits: model-theory is
a “standard” that is widely understood by the scienti-
fic community, and because of this a semantics designed
along its lines provides both a valuable tool for compari-
son (and possibly integration) with other formalisms spe-
cified in the same style, and a machine-independent spe-
cification which implementations of the formalism must
necessarily comply with.

The paper is organized as follows. In order to make
it self-contained, in Section 2 we give a brief overview

expressing closed world assumptions (. . . ) over the domain
and over each predicate, and the axioms of equality”. As
our discussion will be situated in the framework of the pro-
positional calculus, we will take this definition of vivid KB
instead.

of D+, the most general system described in [17]3. This
overview is not completely faithful to the original propo-
sal of [17] in that it incorporates the modifications that
we have suggested in [16] in order to make the above
mentioned systems behave correctly in the presence of
both categorical information and default rules. In Sec-
tion 3 we spell out in detail the proposed model theory.
Quite obviously, it will not be possible to give any for-
mal proof of equivalence of the two approaches, as such a
proof would be possible only if the two approaches were
formally specified in a completely denotational way: it
is precisely a claim of this paper that the approach of
[17] is not so. In order to allow the reader to gain a
better understanding of this semantics, in Section 4 we
will work out the semantics of a sample “heterogeneous
default theory” (i.e. a D+ KB). Section 5 concludes.

2 An overview of Selman and Kautz’s
system D+

Roughly speaking, the idea around which the systems of
[17] revolve is that the import of a default d ≡ α → q is
to make a model (i.e. a complete specification of what the
world is like) where both α and q are true be preferred to
another model where α is true but q is not. By combi-
ning the effects of the preferences due to the individual
defaults, a set of defaults identifies a set of “maximally
preferred” models; these models, isomorphic as they are
to vivid KBs, are meant to represent possible ways in
which the agent may “flesh out” his body of categorical
(or certain) knowledge by the addition of defeasible kno-
wledge. For instance, according to a set of defaults such
as {a → b, b → c}, the model where a, b and c are all
true would be a maximally preferred model. However,
(some of) the systems described in [17] also account for
the fact that a more specific default should override a
less specific one, and they do so by “inhibiting”, where
a contradiction would occur, the preference induced by
the less specific default; this is meant to prevent a set of
defaults such as {a → b, b → c, ab → ¬c, a¬b → ¬c}
to license maximally preferred models where a and c are
both true.

The first thing we need to do in order to introduce D+

in formal detail is to describe what the language for re-
presenting knowledge in D+ is. Let P = {p1, p2, . . . , pn}
be a finite set of propositional letters, and L be the lan-
guage of formulae built up from P and the connectives ¬,
∧ and ∨ in the standard way. We define a default d to be
an expression of the form α → q, where q is a literal (i.e.
a propositional letter p in P or its negation ¬p) and α is
a set of literals4. We will also use the standard definition

3Other systems discussed in [17], such as DH+ and DH+
a ,

are restrictions of D+ to the case of Horn defaults and to the
case of acyclic sets of Horn defaults, respectively; the model
theory that is illustrated in this paper applies straightforwar-
dly to these more restricted systems.

4For notational convenience we will omit braces in ante-



          

of a model for L as a function M : P 
→ {True, False};
accordingly, we will say that M satisfies a propositional
theory (i.e. a set of formulae) T of L (written as M |= T )
iff M assigns True to each formula in T , formulae being
evaluated with respect to M in the standard manner.

The above-mentioned specificity ordering between de-
faults is captured by stipulating that, given a set of de-
faults (or default theory) D, a default d ≡ α → q in
D is blocked at a model M iff there exists a default d′

in D such that d′ ≡ α ∪ β → ¬q and M |= α ∪ β. A
default d ≡ α → q is then said to be applicable to a
model M iff M |= α and d is not blocked at M . If d is
applicable at M , the model d(M) is defined as the model
which is identical to M with the possible exception of the
truth assignment to the propositional letter occurring in
q, which is assigned a truth value such that d(M) |= q.
Naturally enough, a preference ordering induced on mo-
dels by a default theory D may at this point be defined.
Given a default theory D and a propositional theory T ,
the relation “≤+” is defined to hold between two models
M and M ′ which both satisfy T (written M ≤+ M ′) iff
there exists d in D such that d is applicable at M and
such that d(M) = M ′. The relation “≤” is then defi-
ned as the transitive closure of “≤+”5. Finally, we will
say that a model M is maximally preferred (or maximal)
with respect to a propositional theory T and a default
theory D iff for all models M ′ such that M ′ |= T either
M ′ ≤ M is the case or M ≤ M ′ is not the case. We un-
derstand the task of reasoning in D+ as that of finding
an arbitrary model which is maximal with respect to a
given propositional theory T and a given default theory
D. We will illustrate the way D+ works by means of an
example.

Example 1 Let P = {a, b, c, d}, T = {d}, D = {a →
b, b → c, ab → ¬c, a¬b → ¬c, a¬c → ¬d}. The models
¬abcd, ¬a¬bcd, ab¬cd and ¬a¬b¬cd are all and the
only maximal models. Note that if b → c had not been
blocked at ab¬cd, then abcd would have been maximal
too, contrary to intuitions.

3 A fully denotational semantics for D+

In this section we give a description of model-preference
default systems that overcomes the shortcomings hinted
at in the introduction and completely satisfies the re-
quirements of the denotational, or model-theoretic, ap-

cedents of defaults. Hence we will write e.g. ab → ¬c instead
of {a, b} → ¬c.

5Selman and Kautz [17] define “≤” to be the reflexive
transitive closure of “≤+”; that this is redundant may be
seen by inspecting the way “≤” is used in the definition of
maximal model. Also, in the definition of “≤+” (and hence
of “≤”) [17] does not require that the two models satisfy
T ; that this further condition should be enforced in order
to implement a correct behaviour in the presence of both
categorical knowledge and defeasible knowledge is argued in
[16].

proach to semantics. In this spirit, we will divide our
specification into three parts:

1. a specification of the language;

2. a specification of the ontology, i.e. of the entities
that exist in the domain of discourse;

3. a specification of the semantics, i.e. of the mapping
from elements and phenomena belonging to the lin-
guistic level to elements and phenomena belonging
to the ontological level.

We recall that it is crucial to any model-theoretic en-
deavour that task 1 be accomplished without any com-
mitment to the existence of an ontological level, while
task 2 be accomplished without any commitment to the
existence of a linguistic level. It is part 3 which finally
establishes the link between language and reality.

3.1 Syntax

As the language we adopt is obviously no different from
the one adopted in [17], this paragraph will be devoted to
spelling out the language that was informally described
above in a way that is consistent with the typographical
conventions that we will adopt in the rest of the paper6.
Let P = {p1, p2, . . . , pn} be a finite set of propositional
letters, and L be the language of formulae built up from
P and the connectives ¬, ∧ and ∨ in the standard way.

Definition 1 A literal qi is either a propositional letter
pi in P or its negation ¬pi. A propositional theory T is
a set of formulae of L.

We will let q, q1, q2, . . . be metavariables ranging over li-
terals, T, T1, T2, . . . be metavariables ranging over propo-
sitional theories and α, α1, α2 . . . be metavariables ran-
ging over sets of literals.

Definition 2 A default d is an expression of the form
α → q. A default theory D is a set of defaults.

We will let d, d1, d2, . . . be metavariables ranging over de-
faults, and D, D1, D2, . . . be metavariables ranging over
default theories.

Definition 3 A heterogeneous default theory (or HD-
theory, for short) H is a pair 〈T, D〉 where T is a pro-
positional theory and D is a default theory.

We will let H, H1, H2, . . . be metavariables ranging over
HD-theories.

3.2 Ontology

In this section we will give a description of the ontology
on which our language will be interpreted, i.e. of the
entities that are postulated to exist in the domain of
discourse, of the relationships among them and of the
phenomena that involve them. That a description of an

6Throughout this paper symbols printed in boldface will
denote entities belonging to the ontology.



          

ontology be free from any reference to the existence of a
language L is a requirement that should necessarily be
met in any model-theoretic account of L itself; meeting
this requirement has been one of the leading motivations
behind our modifications to the account of [17].

Definition 4 An n-interpretation mn is a n-uple
〈b1, . . . ,bn〉, where each bi may be either T or F.

Henceforth, we will take the freedom to drop the pre-
fix “n-” and simply speak of interpretations when no
confusion about their cardinality could arise. We will let
m,m1,m2, . . . be metavariables ranging over interpreta-
tions and M,M1,M2, . . . be metavariables ranging over
sets of interpretations7.

We may think of an interpretation as a set of truth
conditions specifying whether some facts of interest hold
or not: for example, if n = 2 and the domain of discourse
we are focussing on has to do with Opus being or not a
penguin and Binkley being or not a football player, the
interpretation 〈T,F〉 may be thought of as the state of
affairs in which the fact informally described by the na-
tural language sentence “Opus is a penguin” holds while
the one described by “Binkley is a football player” does
not. Note that we have used these sentences just in or-
der to convey an intuitive feeling for what interpretations
are: things do no need to be talked of (or represented)
in order to exist and, as the absence of any reference
to syntactic entities in the preceding definition shows,
the existence of interpretations is independent from the
existence of a language that uses them as referents8.

Definition 5 A local-preference function d on a set of
interpretations M is a partial function from M to M.
When m belongs to the domain of d we will also say
that d(m) is locally preferrable to m.

We will let d,d1,d2, . . . be metavariables ranging over
local-preference functions and D,D1,D2, . . . be meta-
variables ranging over sets of such functions.

A local-preference function is the ontological entity
which, in Section 3.3, will be put in correspondence with
a default (i.e. will be the semantics of a default). Note
that the notion of blocking as from [17] has not entered
yet: this is because we want local-preference functions to
be the “ontological cornerstones” on which to actually
build this notion. In fact, blocking will be defined on
local-preference functions, and “global preference” (see
below) will be defined more or less as local preference
modulo blocking. Interestingly enough, local preference
functions do not have neat correspondents in other well-
known model theories in philosophical logic. Although

7Also, we will use b1b2 . . .bn as shorthand for
〈b1,b2, . . . ,bn〉.

8In adopting this terminology we take a slight detour from
the one adopted in [17], and reserve the word model (of T )
for an interpretation that satisfies a propositional theory T .
Consistently with model-theoretic terminology, the term “in-
terpretation” will then have an ontological connotation, while
the term “model” will have a semantic one.

at first sight they might resemble the “accessibility rela-
tions” of possible worlds semantics for modal logic [6, 7],
the differences are more striking than the similarities:
note for instance that an accessibility relation is an inte-
gral part of a single interpretation of a modal language
(i.e. is a component of a Kripke structure), while a local-
preference function is “external” to interpretations of our
propositional language (actually, it is a dyadic relation-
ship between them).

Definition 6 A model-preference default structure (or
simply structure) S is a pair 〈M,D〉, where M is a set
of n-interpretations and D is a set of local-preference
functions on Π(n), the set of all n-interpretations.

A structure is the ontological setting on which an HD-
theory H = 〈T, D〉 will be interpreted. Note that the
local-preference functions may be defined also on inter-
pretations that do not belong to M; we will need this (as
will become apparent in Section 3.3) in order to define
the semantics of D independently of the semantics of T .

Definition 7 Given a structure S = 〈M,D〉, two local-
preference functions di ∈ D and dj ∈ D and an inter-
pretation m ∈ M, we will say that di is blocked by dj

at m iff

• m belongs to both the domain of di and the domain
of dj, and

• the domain of dj is a subset of the domain of di,
and

• the ranges of di and dj are disjoint.

The notion of blocking given here corresponds, in spirit,
to the one given in [17]. However, unlike in our work,
Selman and Kautz define the blocking of a default (viz.
of a syntactic object) at a model (viz. an object of the
ontology). In our definition, instead, all entities that are
involved in the phenomenon of blocking are of an on-
tological nature; quite naturally, they are precisely the
real-world entities that, in the description of the seman-
tics given in Section 3.3, we will make correspond to the
linguistic objects that had been used in the definition of
[17]. In particular, that m belongs to both the domain
of di and the domain of dj corresponds to the original
requirement that m satisfies the antecedents of both di

and dj
9; that the domain of dj is a subset of the do-

main of di corresponds to the original requirement that
the antecedent of dj be a superset of the antecedent of
di, and that the ranges of di and dj are disjoint is our
rendition of the consequents of di and dj being one the
negation of the other.

Definition 8 Given a structure S = 〈M,D〉 and two
interpretations m ∈ M and m′ ∈ M, we will say that

9Here we take di and dj to be the defaults that, in the ori-
ginal definition, play the role that in our definition is played
by the two local-preference functions di and dj.



     

m′ is simply globally preferrable to m (written m′ ≥+
m) if there exists a local-preference function di ∈ D such
that di(m) = m′ and there exists no dj ∈ D such that
di is blocked by dj at m. Given a structure S = 〈M,D〉,
m′ is globally preferrable to m (written m′ ≥ m) iff
there are interpretations m1, . . . ,mn with m = m1 and
m′ = mn such that mi+1 ≥+ mi for all i = 1, . . . , n−1.

Hence, “≥+” is just the union of all local-preference
functions modulo blocking, and “≥” is its transitive clo-
sure; “≥” is similar in spirit to the strict partial orders
discussed by Shoham [18] in the context of his “prefe-
rential logics”, although “≥” itself is not a strict partial
order (in fact, it is neither irreflexive nor antisymme-
tric). Note that, according to the definition of “≥+”
(and, by consequence, to the definition of “≥” too), the
two interpretations are required to belong to M: in fact,
the way these definitions will be used in giving the se-
mantics of an HD-theory will require this condition in
order to neglect elements of “≥+” and “≥” that involve
interpretations not satisfying T .

Definition 9 Given a structure S = 〈M,D〉 and an
interpretation m ∈ M, we will say that m is maxi-
mally preferrable (or maximal) iff for all m′ ∈ M either
m ≥ m′ is the case or m′ ≥ m is not the case.

3.3 Semantics

After having specified the linguistic and the ontological
level, we are ready to specify the semantics of the lan-
guage, consisting of a mapping of the former level into
the latter. This semantics will be extensional, as each
linguistic expression will be mapped into an object of the
ontology, which we will call its extension or meaning.

An interesting feature of this semantics is also its being
strictly compositional; this means that the meaning of a
complex linguistic object will be solely a function of the
meaning of its components. This will allow the meaning
of a top-level construct of our representation language
(i.e. the meaning of an HD-theory) to be analyzed in a
tree-like fashion, as acquiring its meaning from the me-
anings of its immediate sub-components and, in turn,
from the meanings of its ultimate constituents (i.e. de-
faults and atomic propositions).

Definition 10 We define the extension of a proposi-
tional letter pi as the set M of interpretations m =
〈b1, . . . ,bn〉 such that bi = T. The extension of a for-
mula α of L and the extension of a propositional theory
T are then defined in the obvious way. When m is in
the extension of α we will also say that α is true at m
(in symbols: m |= α) and that m is a model of α.

The preceding definitions are standard in the extensional
semantics of propositional logic. Where our semantics
comes in is in dealing with the extension of a default.

Definition 11 We define the extension of a default
d ≡ α → qi as the local-preference function d whose do-
main is the extension of α and which maps each interpre-

tation mj contained therein into the interpretation which
is identical to mj with the possible exception of its i-th
element; this element is such that d(mj) |= qi. When a
pair of interpretations 〈m,m′〉, with m′ = d(m), is in
the extension of d, we will also say that d is applicable
at 〈m,m′〉. We define the extension of a default theory
D as the set of the extensions of the elements of D.

This is roughly the analogue of the definition of “appli-
cability” in [17]. Note that our notion of applicability is
a semantic one (i.e. it has, conceptually, the same status
as the notion of “truth”), as it relies on the existence of
a linguistic type (namely, defaults) and of an ontological
type (namely, pairs of interpretations) and puts them
into correspondence, while in the original account of [17]
the definition takes on a somehow hybrid status. Note
that, in keeping with the compositionality requirement,
we do not relativise the extension of a default theory
D to that of a propositional theory T , as this relativi-
sation is properly handled by the definition of maxima-
lity which will come into play in the following definition.
This definition will also correctly handle the case when
a “blocking” occurs.

Let us then define what the semantics of an HD-theory
(a “knowledge base” of our representation language) is,
a definition that establishes the connection among all
previous work.

Definition 12 We define the extension of an HD-theory
H = 〈T, D〉 as the set of interpretations that are ma-
ximally preferrable with respect to the structure S =
〈M,D〉, where M is the extension of T and D is the
extension of D.

Note that D may well involve interpretations that do
not belong to M (i.e. that are not models of T ): it is
the requirement that the extension of H only contain
maximally preferrable interpretations (which, in turn,
brings in the requirement that simple global preference
be a relation between models of T ) that eventually rules
out these interpretations.

A brief comment is worth regarding the meaning that
this semantics attributes to a default theory. As the
extension of a propositional theory T and of an HD-
theory H = 〈T, D〉 is precisely a set of interpretations,
their semantics is immediate and intuitive, as it relates to
the semantic notion of truth, supposedly the “universal”
notion with which all semantic accounts have to come
to terms with. Things are quite different for a default
theory D, as its extension is a set of pairs of interpre-
tations, and this implies that the notion of truth, being
monadic, is not applicable; we need instead a semantic
dyadic notion, and this is precisely what we have called
“applicability”. This, unfortunately, does not say much,
as the notion of applicability does not have the same al-
legedly universal status as truth; the net effect is that
the semantics of a default d and of a default theory D
are somehow “second-class citizens” in this semantics,



      

as their role is only subordinate to the determination of
what the extension of an HD-theory is. However, this is
perfectly reasonable, because the import of a default (or
of a set of them) cannot really be determined in isola-
tion of the body of categorical knowledge that the agent
possesses. It is categorical knowledge that provides the
appropriate context for the determination of what de-
fault knowledge really amounts to, and it is precisely in
this context (i.e. as a component of an HD-theory) that
a default theory becomes a first-class citizen.

Finally, we make explicit the connection between this
semantics and the task of model-preference default rea-
soning.

Definition 13 A propositional theory TH consisting of
literals only is an intended theory wrt an HD-theory H =
〈T, D〉 if the extension of TH is a set containing a single
interpretation m, and if m belongs to the extension of
H.

Intended theories, having a singleton as their extension,
are vivid KBs; therefore, we will understand the task of
a model-preference default system as that of taking an
HD-theory H = 〈T, D〉 as input and returning a propo-
sitional theory TH which is intended wrt H.

4 An example

In order to give the reader a feel for what this semantic
account amounts to, we will take the sample HD-theory
described in Section 2 and work out what its extension
according to our semantics is. Due to the compositional
nature of our semantics we will be able to proceed in a
completely top-down fashion.

Example 2 The sample HD-theory we examine is H =
〈T = {d}, D = {a → b, b → c, ab → ¬c, a¬b →
¬c, a¬c → ¬d}〉. Let us recall that, by Definition 12,
the extension of H is the set of interpretations that are
maximally preferrable with respect to the structure S =
〈M,D〉, where M is the extension of T and D is the
extension of D. By Definition 10 M is the set of all in-
terpretations b1b2b3T, where each of the bi’s is either
T or F. By Definition 11 D is the set of the extensions
of the elements of D, each of these extensions being a
local-preference function (i.e. a set of pairs of interpre-
tations); for example, the extension of the default a → b
stands for the set {〈TFFT,TTFT〉, 〈TFTT,TTTT〉,
〈TTTF,TTFF〉, 〈TFTF,TFFF〉}.

Having individuated the structure S = 〈M,D〉, we now
need to find out the set of interpretations that are maxi-
mally preferrable with respect to it; in order to do this,
we have to compute the global preference relation on S
and, in turn, the simply global preference one. By Defi-
nition 8, the latter is composed by the pairs 〈m,di(m)〉
such that di belongs to D, both m and di(m) belong to
M and such that there exists no dj ∈ D such that di is
blocked by dj at m. By working upwards through Defini-
tions 8 and 9 it is now easy to check that the set of inter-

pretations that are maximally preferrable with respect to
the structure S = 〈M,D〉 is {FTTT, FFTT, TTFT
and FFFT}, which corresponds to the set of maximal
models that had been individuated in Section 2 along the
lines of the specification given in [17].

5 Conclusion

We have provided a semantics for model-preference de-
fault systems that is fully denotational and compositio-
nal. Such a semantics provides both a tool for com-
parison (and possibly integration) with other formali-
sms specified in model-theoretic terms, and a machine-
independent specification of the model-preference for-
malism with which its implementations must necessarily
comply. We plan to use this semantics as a framework
for singling out the similarities and differences between
the model-preference and other “preferential” formali-
sms (such as the ones described in [1, 14, 15, 18]) that
have recently been proposed in the literature.

While for the purposes of this paper we have taken
D+ as a frame of reference, the semantics we have de-
scribed applies straightforwardly to DH+, D+

a and D,
the other systems discussed in [17]. In fact, DH+ is ob-
tained just by a restriction to the case of Horn defaults,
D+

a by restricting default theories to be acyclic, and D
by dropping the notion of blocking; the semantics is thus
identical in the case of DH+ and D+

a , while the condi-
tion on blocking has to be dropped from the definition
of simple global preference to yield a semantics for D.
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