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About Vagueness
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On the Existence of Vague Concepts

What are vague concepts and do they exists?
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What are the pictures about?
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A concept is vague whenever its extension is deemed lacking in
clarity

Aboutness of a picture or piece of text
Tall person
High temperature
Nice weather
Adventurous trip
Similar proof

Vague concepts:
Are abundant in everyday speech and almost inevitable
Their meaning is often subjective and context dependent
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On the Existence of Vague Objects

What are vague objects and do they exists?
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Are there vague objects in the pictures?
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An object is vague whenever its identity is lacking in clarity
Dust
Cloud
Dunes
Sun

Vague objects:
Are not identical to anything, except to themselves (reflexivity)
Are characterised by a vague identity relation (e.g. a similarity
relation)

BTW: example of uncertain object: “habitable Earth-like planet in
universe"
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Vague Statements

A statement is vague whenever it involves vague concepts or
vague objects

Heavy rain
Tall person
Hot temperature

The truth of a vague statement is a matter of degree, as it is
intrinsically difficult to establish whether the statement is entirely
true or false

There are 33 ◦C. Is it hot?
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Sources of Vagueness: Matchmaking

A car seller sells an Audi TT for 31500e, as from the catalog price.

A buyer is looking for a sports-car, but wants to to pay not more than around 30000e

Classical DLs: the problem relies on the crisp conditions on price.

More fine grained approach: to consider prices as vague constraints (fuzzy sets) (as usual
in negotiation)

Seller would sell above 31500e, but can go down to 30500e
The buyer prefers to spend less than 30000e, but can go up to 32000e
Highest degree of matching is 0.75 . The car may be sold at 31250e.
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Sources of Vagueness: Multimedia information
retrieval

IsAbout
ImageRegion Object ID degree
o1 snoopy 0.8
o2 woodstock 0.7
.
.
.

.

.

.

“Find top-k image regions about animals”
Query(x)← ImageRegion(x) ∧ isAbout(x , y) ∧ Animal(y)
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Sources of Vagueness: Distributed Information
Retrieval

Then the agent has to perform automatically the following steps:

1 The agent has to select a subset of relevant resources S ′ ⊆ S , as it is not
reasonable to assume to access to and query all resources (resource
selection/resource discovery);

2 For every selected source Si ∈ S ′ the agent has to reformulate its information
need QA into the query language Li provided by the resource (schema
mapping/ontology alignment);

3 The results from the selected resources have to be merged together (data
fusion/rank aggregation)
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Sources of Vagueness: Vague database query

HotelID hasLoc
h1 hl1
h2 hl2
.
.
.

.

.

.

ConferenceID hasLoc
c1 cl1
c2 cl2
.
.
.

.

.

.

hasLoc hasLoc distance
hl1 cl1 300
hl1 cl2 500
hl2 cl1 750
hl2 cl2 800
.
.
.

.

.

.

hasLoc hasLoc close cheap
hl1 cl1 0.7 0.3
hl1 cl2 0.5 0.5
hl2 cl1 0.25 0.8
hl2 cl2 0.2 0.9
.
.
.

.

.

.
.
.
.

“Find top-k cheapest hotels close to the train station”

q(h)←hasLocation(h, hl) ∧ hasLocation(train, cl) ∧ close(hl, cl) ∧ cheap(h)

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 18 / 239



Sources of Vagueness: Health-care: diagnosis of
pneumonia

E.g., Temp = 37.5, Pulse = 98, RespiratoryRate = 18 are in “danger zone” already

Temperature, Pulse and Respiratory rate: these constraints are rather vague than crisp
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Sources of Vagueness: Ontology alignment (schema
matching)

To which degree are two concepts of two ontologies similar?
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Sources of Vagueness: Lifezone mapping

To which degree do certain areas have a specific bioclima

Holdridge life zones of USA
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Sources of Vagueness: ARPAT, Air quality in the
province of Lucca

http://www.arpat.toscana.it/
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TripAdvisor: Hotel User Judgments
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Uncertainty vs Vagueness: a clarification

Initial difficulty:
Understand the conceptual differences between uncertainty and
vagueness

Main problem:
Interpreting a degree as a measure of uncertainty rather than as a
measure of vagueness
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Uncertain Statements

A statement is true or false in any world/interpretation
We are “uncertain” about which world to consider
We may have e.g. a probability distribution over possible worlds

E.g., “it will rain tomorrow”

We cannot exactly establish whether it will rain tomorrow or not,
due to our incomplete knowledge about our world
We can estimate to which degree this is probable
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Consider a propositional statement (formula) φ
Interpretation (world) I ∈ W,

I :W → {0,1}

I(φ) = 1 means φ is true in I, denoted I |= φ

Each interpretation I depicts some concrete world
Given n propositional letters, |W| = 2n

In uncertainty theory, we do not know which interpretation I is the
actual one
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One may construct a probability distribution over the worlds

Pr :W → [0,1]∑
I Pr(I) = 1

Pr(I) indicates the probability that I is the actual world
Probability Pr(φ) of a statement φ in Pr

Pr(φ) =
∑
I|=φ

Pr(I)

Pr(φ) is the probability of the event: "φ is true"
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Vague Statements

A statement is true to some degree, which is taken from a truth
space (usually [0,1])
The convention prescribing that a proposition is either true or false
is changed towards graded propositions
E.g., “heavy rain”

The compatibility of “heavy” in the phrase “heavy rain” is graded
and the degree depends on the amount of rain is falling

The intensity of precipitation is expressed in terms of a precipitation
rate R: volume flux of precipitation through a horizontal surface,
i.e. m3/m2s = ms−1

It is usually expressed in mm/h
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“Heavy rain” continued...E.g., in weather forecasts one may find:

Rain intensity measured as precipitation rate R: volume flux of
precipitation through a horizontal surface, i.e. m3/m2h = mh−1

Rain. Falling drops of water larger than 0.5 mm in diameter. “Rain” usually implies that the rain will fall
steadily over a period of time;

Light rain. Rain falls at the rate of 2.6 mm or less an hour;
Moderate rain. Rain falls at the rate of 2.7 mm to 7.6 mm an hour;

Heavy rain. Rain falls at the rate of 7.7 mm an hour or more.

Quite harsh distinction: R = 7.7mm/h → heavy rain
R = 7.6mm/h → moderate rain

This is clearly unsatisfactory, as quite naturally

The more rain is falling, the more the sentence “heavy rain” is true
Vice-versa, the less rain is falling the less the sentence is true

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 30 / 239



In other words, that the sentence “heavy rain” is no longer either true or
false, but is intrinsically graded

Even if we have complete knowledge about the current world,
i.e. exact specification of the precipitation rate

More fine grained approach:

Define the various types of rains as

Light rain, moderate rain and heavy rain are vague concepts
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Consider a propositional statement φ

A propositional interpretation I maps φ to a truth degree in [0,1]

I(φ) ∈ [0,1]

I.e., we are unable to establish whether a statement is entirely true or
false due the occurrence of vague concept

Vague statements are truth-functional

Degree of truth of a statement can be calculated from the degrees
of truth of its constituents
Note that this is not possible for uncertain statements

Example of truth functional interpretation of vague statements:

I(φ ∧ ψ) = min(I(φ), I(ψ))
I(φ ∨ ψ) = max(I(φ), I(ψ))
I(¬φ) = 1− I(φ)
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Uncertain Vague Statements

Recap:
In a probabilistic setting each statement is either true or false, but
there is e.g. a probability distribution telling us how probable each
interpretation/sentence is

I(φ) ∈ {0,1},Pr(I) ∈ [0,1] and Pr(φ) =
∑
I|=φ

Pr(I) ∈ [0,1]

In vagueness theory instead, sentences are graded

I(φ) ∈ [0,1]
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Are there sentences combining the two orthogonal concepts of
uncertainty and vagueness?
Yes, and we use them daily !

E.g. “there will be heavy rain tomorrow"

This type of sentences are called uncertain vague sentences
Essentially, there is

uncertainty about the world we will have tomorrow
vagueness about the various types of rain
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Consider a propositional statement φ

A model for uncertain vague sentences:

Define probability distribution over worlds I ∈ W, i.e.

Pr(I) ∈ [0,1],
∑
I

Pr(I) = 1

Sentences are graded: each interpretation I ∈W is truth functional
and maps sentences into [0,1]

I(φ) ∈ [0,1]

For a sentence φ, consider the expected truth of φ

ET (φ) =
∑
I

Pr(I) · I(φ) .

Note: if I is bivalent (that is, I(φ) ∈ {0,1}) then ET (φ) = Pr(φ)
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From Fuzzy Sets to Mathematical Fuzzy Logic
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Fuzzy Sets Basics

From Crisp Sets to Fuzzy Sets.
Let X be a universal set of objects
The power set, denoted 2A, of a set A ⊂ X , is the set of subsets of
A, i.e.,

2A = {B | B ⊆ A}

Often sets are defined as

A = {x | P(x)}

P(x) is a statement “x has property P”
P(x) is either true or false for any x ∈ X
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Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a day}
A = {x | x is a rainy day}
B = {x | x is a day with precipitation rate R ≥ 7.5mm/h}

In the above case: B ⊆ A ⊆ X
The membership function of a set A ⊆ X :

χA : X → {0,1}

where χA(x) = 1 iff x ∈ A
Note that for sets A,B ∈ 2X

A ⊆ B iff ∀x ∈ X . χA(x) ≤ χB(x)
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Complement of a set A, i.e. Ā = X \ A: ∀x ∈ X :

χĀ(x) = 1− χA(x)

Intersection and union: ∀x ∈ X

χA∩B(x) = min(χA(x), χB(x))

χA∪B(x) = max(χA(x), χB(x))

Cartesian product of two sets A,B ∈ 2X

A× B = {〈a, b〉 | a ∈ A, b ∈ B}

A relation R ⊆ X × X
is reflexive if for all x ∈ X

χR(x , x) = 1

is symmetric if for all x , y ∈ X

χR(x , y) = χR(y , x)

Inverse of R, χR−1 : X × X → {0, 1}: ∀x , y ∈ X :

χR−1 (y , x) = χR(x , y)
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Fuzzy set A: χA : X → [0,1], or simply

A : X → [0,1]

Fuzzy power set over X , is denoted 2̃X , i.e. the set of all fuzzy sets
over X
Example: the fuzzy set

C = {x | x is a day with heavy precipitation rate R}

is defined via the membership function

χC(x) =


1 if R ≥ 7.5
(x − 5)/2.5 if R ∈ [5,7.5)
0 otherwise
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Fuzzy membership functions may depend on the context and may be
subjective
Shape may be quite different
Usually, it is sufficient to consider functions

(a) (b)

(c) (d)
(a) Trapezoidal trz(a, b, c, d); (b) Triangular tri(a, b, c); (c) left-shoulder ls(a, b); (d) right-shoulder rs(a, b)

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 41 / 239



Fuzzy Sets Construction

The usefulness of fuzzy sets depends critically on appropriate
membership functions
Methods for fuzzy membership functions construction is largely
addressed in literature
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Easy and typically satisfactory method (numerical domain)

uniform partitioning into 5 fuzzy sets

Fuzzy sets construction using trapezoidal functions

Fuzzy sets construction using triangular functions
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Another popular method is based on clustering
Use Fuzzy C-Means to cluster data into 5 clusters

Fuzzy C-Means extends K-Means to accommodates graded
membership

From the clusters c1, . . . , c5 take the centroids π1, . . . , π5

Build the fuzzy sets from the centroids

Fuzzy sets construction using clustering
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Norm-Based Fuzzy Set Operations

Standard fuzzy set operations are not the only ones
Most notable ones are triangular norms

t-norm ⊗ for set intersection
t-conorm ⊕ (also called s-norm) for set union
negation 	 for set complementation
implication⇒

set inclusion A v B is defined as

inf
x∈X

A(x)⇒ B(x)

⇒ is often defined from ⊗ as r-implication

a⇒ b = sup {c | a⊗ c ≤ b} .

These functions satisfy some properties that one expects to hold
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Properties for t-norms and s-norms

Axiom Name T-norm S-norm
Taututology/Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b ⊗ a a⊕ b = b ⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b ⊗ c) (a⊕ b)⊕ c = a⊕ (b ⊕ c)
Monotonicity if b ≤ c, then a⊗ b ≤ a⊗ c if b ≤ c, then a⊕ b ≤ a⊕ c
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Properties for implication and negation functions

Axiom Name Implication Function Negation Function
Tautology / Contradiction 0⇒ b = 1, a⇒ 1 = 1, 1⇒ 0 = 0 	 0 = 1, 	 1 = 0
Antitonicity if a ≤ b, then a⇒ c ≥ b ⇒ c if a ≤ b, then 	 a ≥ 	 b
Monotonicity if b ≤ c, then a⇒ b ≤ a⇒ c
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By commutativity, ⊗ and ⊕ are monotone also in the first argument
⊗ is indempotent if a⊗ a = a, for all a ∈ [0,1]

Megation function 	 is involutive iff 		 a = a, for all a ∈ [0,1].
Salient negation functions are:
Standard or Łukasiewicz negation: 	la = 1− a;
Gödel negation: 	ga is 1 if a = 0, else is 0.
Łukasiewicz negation is involutive, Gödel negation is not.
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Salient t-norm functions are:
Gödel t-norm: a⊗g b = min(a,b);
Bounded difference or Łukasiewicz t-norm:

a⊗l b = max(0,a + b − 1);
Algebraic product or product t-norm: a⊗p b = a · b;
Drastic product:

a⊗d b =

{
0 when (a,b) ∈ [0,1[×[0,1[
min(a,b) otherwise
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Salient s-norm functions are:
Gödel s-norm: a⊕g b = max(a,b);
Bounded sum or Łukasiewicz s-norm: a⊕l b = min(1,a + b);
Algebraic sum or product s-norm: a⊕p b = a + b − ab;

Drastic sum: a⊕d b =

{
1 when (a,b) ∈]0,1]×]0,1]
max(a,b) otherwise
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Salient properties of norms:
Ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g

⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g .

The only idempotent t-norm is ⊗g .
The only t-norm satisfying a⊗ a = 0 for all a ∈ [0,1[ is ⊗d .
Ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d

⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d .
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The only idempotent s-norm is ⊕g .
The only s-norm satisfying a⊕ a = 1 for all a ∈]0,1] is ⊕d .
The dual s-norm of ⊗ is defined as

a⊕ b = 1− (1− a)⊗ (1− b) .

Kleene-Dienes implication: x ⇒ y = max(1− x , y) is called
Fuzzy modus ponens: let a ≥ n and a⇒ b ≥ m

Under Kleene-Dienes implication, we infer that if n > 1−m then
b ≥ m
Under r-implication relative to a t-norm ⊗, we infer that b ≥ n ⊗m

composition of two fuzzy relations R1 : X × X → [0,1] and
R2 : X × X → [0,1]: for all x , z ∈ X

(R1 ◦ R2)(x , z) = supy∈X R1(x , y)⊗ R2(y , z)

A fuzzy relation R is transitive iff for all x , z ∈ X
R(x , z)≥ (R ◦ R)(x , z)
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Łukasiewicz, Gödel, Product logic and Standard Fuzzy
logic

One distinguishes three different sets of fuzzy set operations
(called fuzzy logics)

Łukasiewicz, Gödel, and Product logic
Standard Fuzzy Logic (SFL) is a sublogic of Łukasiewicz

min(a, b) = a⊗l (a⇒l b), max(a, b) = 1−min(1− a, 1− b)

Łukasiewicz Logic Gödel Logic Product Logic SFL
a⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a⇒ b min(1− a + b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a

{
1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1− a

Mostert–Shields theorem: any continuous t-norm can be obtained
as an ordinal sum of these three
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Some additional properties

Property Łukasiewicz Logic Gödel Logic Product Logic SFL
x ⊗	 x = 0 •
x ⊕	 x = 1 •
x ⊗ x = x • •
x ⊕ x = x • •
		 x = x • •

x ⇒ y = 	 x ⊕ y • •
	 (x ⇒ y) = x ⊗	 y • •
	 (x ⊗ y) = 	 x ⊕	 y • • • •
	 (x ⊕ y) = 	 x ⊗	 y • • • •

Note: If all conditions in the upper part of a column have to be
satisfied then we collapse to classical two-valued logic
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Fuzzy Modifiers

Fuzzy modifiers: interesting feature of fuzzy set theory
A fuzzy modifier apply to fuzzy sets to change their membership
function

Examples: very, more_or_less, and slightly

A fuzzy modifier m represents a function

fm : [0,1]→ [0,1]

Example: fvery(x) = x2, fmore_or_less(x) = tri(0, x , 1), fslightly(x) =
√

x
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Modelling the fuzzy set of very heavy rain:

χvery heavy rain(x) = fvery(χheavyrain(x))

= (χheavyrain(x))2

= (rs(5, 7.5)(x))2

A typical shape of modifiers: linear modifiers lm(a,b)

0 1

1

a

b

x

Note: linear modifiers require one parameter c only

lm(a,b) = lm(c)

where a = c/(c + 1) , b = 1/(c + 1)
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Mathematical Fuzzy Logics Basics

OWL 2 is grounded on Mathematical Logic
Fuzzy OWL 2 is grounded on Mathematical Fuzzy Logic
A statement is no longer either true or false, but is graded
Truth space: set of truth values L with some structure
Given a statement φ

Fuzzy Interpretation: a function I mapping φ into L, i.e.

I(ϕ) ∈ L

Usually

L = [0,1]

Ln = {0, 1
n
, . . . ,

n − 2
n − 1

, . . . ,1} (n≥1)
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Fuzzy statement: for r ∈ [0,1]

〈φ, r〉

The degree of truth of φ is equal or greater than r

Examples:
Fuzzy FOL: 〈RainyDay(d),0.75〉
Fuzzy LPs: 〈RainyDay(d)←,0.75〉
Fuzzy RDFS: 〈〈d , type,RainyDay〉,0.75〉
Fuzzy DLs: 〈d :RainyDay ,0.75〉

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 58 / 239



Fuzzy interpretation I:
Maps each basic statement pi into [0,1]
Extended inductively to all statements

I(φ ∧ ψ) = I(φ)⊗ I(ψ)
I(φ ∨ ψ) = I(φ)⊕ I(ψ)
I(φ→ ψ) = I(φ)⇒ I(ψ)
I(φ↔ ψ) = I(φ→ ψ)⊗ I(ψ → φ)
I(¬φ) = 	I(φ)
I(∃x .φ) = supa∈∆I Ia

x (φ)
I(∀x .φ) = infa∈∆I Ia

x (φ) ,

where
∆I is the domain of I
⊗, ⊕,⇒, and 	 are the t-norms, t-conorms, implication functions, a
negation functions
The function Ia

x is as I except that x is interpreted as a
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Example

In Lukasiewicz logic:

ϕ = Cold ∧ Cloudy

I Cold Cloudy I(ϕ)

I1 0 0.1 max(0,0 + 0.1− 1) = 0.0
I2 0.3 0.4 max(0,0.3 + 0.4− 1) = 0.0
I3 0.7 0.8 max(0,0.7 + 0.9− 1) = 0.6
I4 1 1 max(0,1 + 1− 1) = 1.0
...

...
...

...

Note: given m propositional letters
Fuzzy interpretations over L = [0,1] are not recursively enumerable
There are nm fuzzy interpretations over Ln
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One may also consider the following abbreviations:

φ ∧g ψ
def
= φ ∧ (φ→ ψ)

φ ∨g ψ
def
= (φ→ ψ)→ φ) ∧g (ψ → φ)→ ψ)

¬⊗φ
def
= φ→ 0

〈φ ≤ r〉 def
= 〈¬lφ,1− r〉

In case⇒ is the r-implication based on ⊗, then
∧g is Gödel t-norm
∨g is Gödel s-norm
¬⊗ is interpreted as the negation function related to ⊗
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I satisfies 〈φ, r〉, or I is a model of 〈φ, r〉

I |= 〈φ, r〉 iff I(φ) ≥ r

I is a model of φ if I(φ) = 1
Fuzzy knowledge base K: finite set of fuzzy statements
I satisfies (is a model of) K: I |= K iff it satisfies each element in it
Best entailment degree of φ w.r.t. K:

bed(K, φ) = sup {r | K |= 〈φ, r〉}

Best satisfiability degree of φ w.r.t. K:

bsd(K, φ) = sup
I
{I(φ) | I |= K}
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Proposition (Fuzzy Modus Ponens )
For r-implication→, for r , s ∈ [0, 1]:

〈φ, r〉, 〈φ→ ψ, s〉 |= 〈ψ, r ⊗ s〉

Proposition
Salient equivalences:

¬¬φ ≡ φ (Ł,SFL)

φ ∧ φ ≡ φ (G,SFL)

¬(φ ∧ ¬φ) ≡ 1 (Ł,G,Π)

φ ∨ ¬φ ≡ 1 (Ł)

∀x .φ ≡ ¬∃x .¬φ (Ł,SFL)
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Proposition
Salient equivalences:

Ł + G ≡ Boolean Logic
Ł + Π ≡ Boolean Logic
G + Π ≡ Boolean Logic
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Proposition (BED)
bed(K, φ) = min x . such that K ∪ {〈ϕ ≤ x〉} satisfiable.

Proposition (BSD)
bsd(K, φ) = max x . such that K ∪ {〈ϕ, x〉} satisfiable.
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On Witnessed Models

Witnessed interpretation I:

I(∃x .φ) = Ia
x (φ), for some a ∈ ∆I (1)

I(∀x .φ) = Ia
x (φ), for some a ∈ ∆I (2)

The supremum (resp. infimum) are attained at some point

Classical interpretations are witnessed

Fuzzy interpretations may not be witnessed

E.g., I is not witnessed as Eq. (1) not satisfied:

∆I = N
In

x (A(x)) = 1− 1/n < 1, for all n

I(∃x .A(x)) = sup
n
In

x (A(x))

= sup
n

1− 1/n = 1
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Proposition (Witnessed model property)
In Łukasiewicz logic and SFL over L = [0,1], or for all cases in which
the truth space L is finite, a fuzzy KB has a witnessed fuzzy model iff it
has a fuzzy model.

Not true for Gödel and product logic over L = [0,1]

¬∀x p(x) ∧ ¬∃x ¬p(x) has no classical model
In Gödel logic it has no finite model, but has an infinite model: for
integer n ≥ 1, let I such that I(p(n)) = 1/n

I(∀x p(x)) = inf
n

1/n = 0

I(∃x ¬p(x)) = sup
n
¬1/n = sup 0 = 0

IMHO: non-witnessed models make little sense in KR
We will always assume that interpretations are witnessed
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Fuzzy Propositional Logic: Reasoning

We need to distinguish if truth space is L = [0,1] or
Ln = {0, 1

n , . . . ,
n−2
n−1 , . . . ,1}

Case Ln easier: given m propositional letters, there are mn

possible interpretations
We may use

Operational Research
Analytic Tableaux, Non-Deterministic Analytic Tableaux
Reduction into Classical Propositional Logic
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Operational Research: Case Łukasiewicz Logic & SFL

Basic idea: translate formulae into equational constraints about
truth degrees
For a formula φ consider a variable xφ

Intuition: xφ will hold the degree of truth of statement φ
Example: constraints under Łukasiewicz for 〈¬φ,0.6〉

x¬φ ∈ [0,1]

xφ ∈ [0,1]

x¬φ = 1− xφ
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We may use Mixed Integer Linear Programming for the encodings of constraints
For Łukasiewicz:

x1⊗l x2 = z 7→ {x1 + x2− 1 ≤ z, x1 + x2− 1 ≥ z − y , z ≤ 1− y , y ∈ {0, 1}},
where y is a new variable.
x1 ⊕l x2 = z 7→ {x1 + x2 ≤ z + y , y ≤ z, x1 + x2 ≥ z, y ∈ {0, 1}}, where y is
a new variable.
x1 ⇒l x2 = z 7→ {(1− x1)⊕l x2 = z}.

For SFL:

x1 ⊗g x2 = z 7→ {z ≤ x1, z ≤ x2, x1 ≤ z + y , x2 ≤ z + (1− y), y ∈ {0, 1}},
where y is a new variable.
x1 ⊕g x2 = z 7→ {z ≥ x1, z ≥ x2, x1 + y ≥ z, x2 + (1− y) ≥ z, y ∈ {0, 1}},
where y is a new variable.
x1 ⇒kd x2 = z 7→ (1− x1)⊕g x2 = z.
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Negation Normal Form, nnf (φ)

¬ ⊥ = >
¬> = ⊥
¬¬φ 7→ φ

¬(φ ∧ ψ) 7→ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) 7→ ¬φ ∧ ¬ψ
¬(φ→ ψ) 7→ φ ∧ ¬ψ .
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1 TransformK into NNF

2 Initialize the fuzzy theory TK and the initial set of constraints CK by

TK = {φ | 〈φ, n〉 ∈ K}
CK = {xψ ≥ n | 〈φ, n〉 ∈ K}

3 Apply the following inference rules until no more rules can be applied
(var). For variable xφ occurring in CK add xφ ∈ [0, 1] to CK
( ¯var). For variable x¬φ occurring in CK add xφ = 1− x¬φ to CK

(⊥). If⊥∈ TK then CK := CK ∪ {x⊥ = 0}
(>). If> ∈ TK then CK := CK ∪ {x> = 1}

(∧). If φ ∧ ψ ∈ TK , then

1 add φ and ψ to TK

2 CK := CK ∪ {xφ ⊗ xψ = xφ∧ψ}

(∨). If φ ∨ ψ ∈ TK , then

1 add φ and ψ to TK

2 CK := CK ∪ {xφ ⊕ xψ = xφ∧ψ}

(→). If φ→ ψ ∈ TK , then

1 add nnf (¬φ) and ψ to TK

2 CK := CK ∪ {(1− xnnf (¬φ))⇒ xψ = xφ→ψ}

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 72 / 239



sat(K): K is satisfiable iff the final set of constraints CK has a
solution

bed(K, φ): Add ¬φ to TK
Add x¬φ ≥ 1− x , x ∈ [0,1] to CK, x new
Compute final set of constraints CK
Then, solve the optimisation problem

bed(K, φ) = min x . such that CK has a solution

bsd(K, φ): Add φ to TK
Add xφ ≥ x , x ∈ [0,1] to CK, x new
Compute final set of constraints CK
Then, solve the optimisation problem

bsd(K, φ) = max x . such that CK has a solution
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Analytical Fuzzy Tableau: Case SFL

Main property the method is based on:
if I is model of 〈φ ∧ ψ,n〉 then I is a model of both 〈φ,n〉 and 〈ψ,n〉;
if I is model of 〈φ ∨ ψ,n〉 then I is a model of either 〈φ,n〉 or 〈ψ,n〉.
I cannot be a model of both 〈p,n〉 and 〈¬p,m〉 if n > 1−m.

A clash is either
a fuzzy statement 〈⊥,n〉 with n > 0; or
a pair of fuzzy statements 〈p,n〉 and 〈¬p,m〉 with n > 1−m

Clash-free: does not contain a clash
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1 Transform K into NNF
2 Initialize the completion SK = K
3 Apply the following inference rules to SK until no more rules can be applied
4 We call a set of fuzzy statements SK complete iff none of the rules below can be applied to
SK

5 Note that rule (∨) is non-deterministic

(∧). If 〈φ ∧ ψ, n〉 ∈ SK and {〈φ, n〉, 〈ψ, n〉} 6⊆ SK , then add both 〈φ, n〉 and
〈ψ, n〉 to SK

(∨). If 〈φ ∨ ψ, n〉 ∈ SK and {〈φ, n〉, 〈ψ, n〉} ∩ SK = ∅, then add either 〈φ, n〉
or 〈ψ, n〉 to SK

(→). If 〈φ→ ψ, n〉 ∈ SK and 〈nnf (¬φ) ∨ ψ, n〉 6∈ SK, then add
〈nnf (¬φ) ∨ ψ, n〉 to SK

sat(K): K is satisfiable iff we find a complete and clash-free
completion SK of K
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For BED and BSD we need some more work
Given K, define

NK = {0,0.5,1} ∪ {n | 〈φ,n〉 ∈ K}
N̄K = NK ∪ {1− n | n ∈ NK}
ε = min{d/2 | n,m ∈ N̄K,n 6= m,d = |n −m|}

Proposition
Under SFL, given K, then for n > 0

K |= 〈φ,n〉 iff K ∪ {〈¬φ,1− n + ε〉} is not satisfiable .

Moreover, K is satisfiable iff it has a model over N̄K.
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bed(K, φ): Find greatest n ∈ N̄K such that K |= 〈φ,n〉
bsd(K, φ): Find greatest n ∈ N̄K such that K ∪ {〈φ,n〉} satisfiable
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Non Deterministic Analytic Fuzzy Tableau

Works for finitely-valued fuzzy propositional logic over Ln

Works also for SFL (as in place of [0, 1], we may use N̄K)

Basic idea is as for fuzzy tableau, but now we guess the truth degrees

(∧). If 〈φ ∧ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⊗ n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n2〉 to SK

(∨). If 〈φ ∨ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⊕ n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n2〉 to SK

(→). If 〈φ→ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⇒ n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n2〉 to SK

A clash is either
a fuzzy statement 〈⊥, n〉 with n > 0; or
a pair of fuzzy statements 〈p, n〉 and 〈¬p,m〉 such that

xp ≥ n, 	xp ≥ m, xp ∈ Ln

has no solution
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Reduction to Classical Propositional Logic: Case SFL
over [0,1]

Given K, we know that we can use

Ln = N̄K = {γ1, . . . , γn}

with γi < γi+1,1 ≤ i ≤ n − 1
Basic idea: use atom A≥r to represent

The truth degree of A has to be equal or greater than r

Similarly for A>r , A≤r and A<r

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 79 / 239



To start with, build CrispLn

For all atoms A, for all 1 ≤ i ≤ n − 1,2 ≤ j ≤ n − 1

A≥γi+1 → A>γi

A>γj → A≥γj

Build CrispK:

CrispK = {ρ(φ,n) | 〈φ,n〉 ∈ K} ∪
CrispLn ,

x y ρ(x , y)
> c >
⊥ 0 >
⊥ c ⊥ if c > 0
A c A≥c
¬A c ¬A>1−c
φ ∧ ψ c ρ(φ, c) ∧ ρ(ψ, c)
φ ∨ ψ c ρ(φ, c) ∨ ρ(ψ, c)
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Proposition
Given K under SFL over Ln, then K |= 〈φ, c〉 iff K ∪ {〈¬φ,1− c−〉} is
not satisfiable, where c− is the next smaller value than c in Ln

sat(K): K is satisfiable iff CrispK satisfiable
bed(K, φ): Find greatest c ∈ Ln such that K |= 〈φ, c〉
bsd(K, φ): Find greatest c ∈ Ln such that K ∪ {〈φ, c〉} satisfiable
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From Fuzzy to Annotated Semantic Web Languages
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The Semantic Web Family of Languages

Wide variety of languages

RDFS: Triple language, -Resource Description Framework

The logical counterpart is ρdf

RIF: Rule language, -Rule Interchange Format,

Relate to the Logic Programming (LP) paradigm

OWL 2: Conceptual language, -Ontology Web Language

Relate to Description Logics (DLs)

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 83 / 239



RDFS

RDFS: the triple language

〈subject ,predicate,object〉

e.g. 〈umberto,born, zurich〉
Computationally: compute closure, cl(K),

Infer all possible triples using inference rules, e.g.

(A, sc,B), (X , type,A)

(X , type,B)

“if A subclass of B, X instance of A then X is instance of B”

Complexity: O(|K|2)

Store all inferred triples into a relational database and query via
SQL
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OWL 2 family: the object oriented language

class PERSON partial

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom GEOPLACE)

. . .

Computationally: tableaux like algorithms
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OWL 2 Profiles

OWL 2 EL Useful for large size of properties and/or classes
Basic reasoning problems solved in polynomial time
The EL acronym refers to the EL family of DLs

OWL 2 QL Useful for very large volumes of instance data
Conjunctive query answering via query rewriting and SQL
OWL 2 QL relates to the DL family DL-Lite

OWL 2 RL Useful for scalable reasoning without sacrificing too much
expressive power
OWL 2 RL maps to Datalog
Computational complexity: same as for Datalog, polynomial in
size of the data, EXPTIME w.r.t. size of knowledge base
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RIF/RuleML

RIF/RuleML family: the rule language

Forall ?Buyer ?Item ?Seller
buy(?Buyer ?Item ?Seller) :- sell(?Seller ?Item ?Buyer)
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Important point: RDFS, OWL 2 and RIF/RuleML are logical languages

RDFS: logic with intensional semantics
OWL 2: relates to the Description Logics family
RIF/RuleML: relates to the Logic Programming paradigm (e.g.,
Datalog, Datalog±)
OWL 2 and RIF/RuleML have extensional semantics
We will address them from a logical point of view
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The case of RDF

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 89 / 239



Crisp RDFS Syntax

Pairwise disjoint alphabets
U (RDFS URI references)
B (Blank nodes)
L (Literals)

For simplicity we will denote unions of these sets simply
concatenating their names
We call elements in UBL terms (denoted t)
We call elements in B variables (denoted x)
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RDFS triple (or RDFS atom):

(s,p,o) ∈ UBL× U× UBL

s is the subject
p is the predicate
o is the object

Example:
(airplane,has,enginefault)
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ρdf (restricted RDFS)

ρdf (read rho-df, the ρ from restricted rdfs)
ρdf is defined as the following subset of the RDFS vocabulary:

ρdf = {sp, sc, type,dom, range}

(p, sp,q)

property p is a sub property of property q
(c, sc,d)

class c is a sub class of class d
(a, type,b)

a is of type b
(p,dom, c)

domain of property p is c
(p, range, c)

range of property p is c
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RDF Semantics

RDF interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉 ,

where
∆R ,∆P ,∆C ,∆L are the interpretations domains of I
P[[·]],C[[·]], ·I are the interpretation functions of I
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I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉

1 ∆R is a nonempty set of resources, called the domain or universe of I;
2 ∆P is a set of property names (not necessarily disjoint from ∆R);
3 ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource denotes a

class of resources;
4 ∆L ⊆ ∆R , the set of literal values, ∆L contains all plain literals in L ∩ V ;
5 P[[·]] maps each property name p ∈ ∆P into a subset P[[p]] ⊆ ∆R ×∆R ,

i.e. assigns an extension to each property name;
6 C[[·]] maps each class c ∈ ∆C into a subset C[[c]] ⊆ ∆R , i.e. assigns a set of

resources to every resource denoting a class;
7 ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a resource or a

property name to each element of UL in V , and such that ·I is the identity for
plain literals and assigns an element in ∆R to elements in L;

8 ·I maps each variable x ∈ B into a value xI ∈ ∆R , i.e. assigns a resource to
each variable in B.
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Models

Intuitively,

A ground triple (s,p,o) in an RDF graph G will be true under the
interpretation I if

p is interpreted as a property name
s and o are interpreted as resources
the interpretation of the pair (s,o) belongs to the extension of the
property assigned to p

Blank nodes, i.e. variables, work as existential variables: a triple
((x ,p,o) with x ∈ B would be true under I if

there exists a resource s such that (s,p,o) is true under I
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Models (cont.)

Let G be a graph over ρdf.

An interpretation I is a model of G under ρdf, denoted I |= G, iff
I is an interpretation over the vocabulary ρdf ∪ universe(G)
I satisfies the following conditions:

Simple:
1 for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P[[pI ]];

Subproperty:
1 P[[spI ]] is transitive over ∆P ;
2 if (p, q) ∈ P[[spI ]] then p, q ∈ ∆P and P[[p]] ⊆ P[[q]];
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Models (cont.)

Subclass:
1 P[[scI ]] is transitive over ∆C ;
2 if (c, d) ∈ P[[scI ]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d ]];

Typing I:
1 x ∈ C[[c]] iff (x , c) ∈ P[[typeI ]];
2 if (p, c) ∈ P[[domI ]] and (x , y) ∈ P[[p]] then x ∈ C[[c]];
3 if (p, c) ∈ P[[rangeI ]] and (x , y) ∈ P[[p]] then y ∈ C[[c]];

Typing II:
1 For each e ∈ ρdf, eI ∈ ∆P
2 if (p, c) ∈ P[[domI ]] then p ∈ ∆P and c ∈ ∆C
3 if (p, c) ∈ P[[rangeI ]] then p ∈ ∆P and c ∈ ∆C
4 if (x , c) ∈ P[[typeI ]] then c ∈ ∆C
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Entailment

G entails H under ρdf, denoted G |= H, iff
every model under ρdf of G is also a model under ρdf of H

Note: often P[[spI ]] (resp. C[[scI ]]) is also reflexive over ∆P (resp.
∆C)

We omit this requirement and, thus, do NOT support inferences
such as

G |= (a, sp,a)

G |= (a, sc,a)

which anyway are of marginal interest
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Example

G =

 (o1, IsAbout , snoopy) (o2, IsAbout ,woodstock)
(snoopy , type, dog) (woodstock , type, bird)
(dog, sc, animal) (bird , sc, animal)


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Deduction System for RDF

1 Simple:
G
G′ for G′ ⊆ G

2 Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C)

(b) (A,sp,B),(X ,A,Y )
(X ,B,Y )

3 Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C)

(b) (A,sc,B),(X ,type,A)
(X ,type,B)

4 Typing:

(a) (A,dom,B),(X ,A,Y )
(X ,type,B)

(b) (A,range,B),(X ,A,Y )
(Y ,type,B)

5 Implicit Typing:

(a) (A,dom,B),(C,sp,A),(X ,C,Y )
(X ,type,B)

(b) (A,range,B),(C,sp,A),(X ,C,Y )
(Y ,type,B)
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RDFS Query Answering

We assume that a RDF graph G is ground and closed, i.e., G is closed under the application of the rules (2)-(5)

Conjunctive query: is a Datalog-like rule of the form

q(x)← ∃y.τ1, . . . , τn

where
n ≥ 1, τ1, . . . , tn are triples
x is a vector of variables occurring in τ1, . . . , τn , called the distinguished variables
y are so-called non-distinguished variables and are distinct from the variables in x

each variable occurring in τi is either a distinguished variable or a non-distinguished variable

If clear from the context, we may omit the exitential quantification ∃y

For instance, the query

q(x, y)← (x, creates, y), (x, type, Flemish), (x, paints, y), (y, exhibited,Uffizi)

has intended meaning to retrieve all the artifacts x created by Flemish artists y , being exhibited at Uffizi Gallery
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RDF Query Answering (cont.)

A simple query answering procedure is the following:
Compute the closure of a graph off-line
Store the RDF triples into a Relational database
Translate the query into a SQL statement
Execute the SQL statement over the relational database

In practice, some care should be in place due to the large size of
data: ≥ 109 triples
To date, several systems exists
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Example

G =

 (o1, IsAbout , snoopy) (o2, IsAbout ,woodstock)
(snoopy , type, dog) (woodstock , type, bird)
(dog, sc, animal) (bird , sc, animal)


Consider the query

q(x) ← (x , IsAbout , y), (y , type,Animal)

Then

answer(G, q) = {o1, o2}
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Fuzzy RDFS

Triples may have attached a degree in [0,1]: for n ∈ [0,1]

〈(subject ,predicate,object),n〉

Meaning: the degree of truth of the statement is at least n
For instance,

〈(o1, IsAbout , snoopy),0.8〉
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Fuzzy RDF Syntax

Fuzzy RDF triple (or Fuzzy RDF atom):

〈τ,n〉 ∈ (UBL× U× UBL)× [0,1]

s ∈ UBL is the subject
p ∈ U is the predicate
o ∈ UBL is the object
n ∈ (0,1] is the degree of truth

Example:
〈(audiTT, type,SportCar),0.8〉
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Fuzzy RDF Semantics

Fix a t-norm ⊗
Fuzzy RDF interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉 ,

where
∆R ,∆P ,∆C ,∆L are the interpretations domains of I
P[[·]],C[[·]], ·I are the interpretation functions of I
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I = 〈∆R,∆P ,∆C ,∆L,P[[·]],C[[·]], ·I〉

1 ∆R is a nonempty set of resources, called the domain or universe of I;
2 ∆P is a set of property names (not necessarily disjoint from ∆R );
3 ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource denotes a class of

resources;
4 ∆L ⊆ ∆R , the set of literal values, ∆L contains all plain literals in L ∩ V ;
5 P[[·]] maps each property name p ∈ ∆P into a function P[[p]] : ∆R ×∆R → [0, 1],

i.e. assigns a degree to each pair of resources, denoting the degree of being the pair an
instance of the property p;

6 C[[·]] maps each class c ∈ ∆C into a function C[[c]] : ∆R → [0, 1], i.e. assigns a degree to
every resource, denoting the degree of being the resource an instance of the class c;

7 ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , i.e. assigns a resource or a property
name to each element of UL in V , and such that ·I is the identity for plain literals and
assigns an element in ∆R to elements in L;

8 ·I maps each variable x ∈ B into a value xI ∈ ∆R , i.e. assigns a resource to each
variable in B.
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Models

Let G be a graph over ρdf.

An interpretation I is a model of G under ρdf, denoted I |= G, iff
I is an interpretation over the vocabulary ρdf ∪ universe(G)
I satisfies the following conditions:

Simple:
1 for each 〈(s, p, o), n〉 ∈ G, pI ∈ ∆P and P[[pI ]](sI , oI) ≥ n;

Subproperty:
1 P[[spI ]](p, q)⊗ P[[spI ]](q, r) ≤ P[[spI ]](p, r);
2 P[[pI ]](x , y)⊗ P[[spI ]](p, q) ≤ P[[qI ]](x , y);
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Models (cont.)

Subclass:
1 P[[scI ]](c, d)⊗ P[[scI ]](d , e) ≤ P[[scI ]](c, e);
2 C[[cI ]](x)⊗ P[[scI ]](c, d) ≤ P[[dI ]](x);

Typing I:
1 C[[c]](x) = P[[typeI ]](x , c);
2 P[[domI ]](p, c)⊗ P[[p]](x , y) ≤ C[[c]](x);
3 P[[rangeI ]](p, c)⊗ P[[p]](x , y) ≤ C[[c]](y);

Typing II:
1 For each e ∈ ρdf, eI ∈ ∆P ;
2 P[[spI ]](p, q) is defined only for p, q ∈ ∆P ;
3 C[[scI ]](c, d) is defined only for c, d ∈ ∆C ;
4 P[[domI ]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
5 P[[rangeI ]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
6 P[[typeI ]](s, c) is defined only for c ∈ ∆C .
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Example & Model

G = {〈(audiTT , type, SportsCar), 0.8〉, 〈(SportsCar, sc, PassengerCar), 0.9〉} t-norm: Product

I = 〈∆R ,∆P ,∆C ,∆L, P[[·]],C[[·]], ·I〉

∆R = {audiTT , SportsCar, PassengerCar}
∆P = {type, sc}
∆C = {SportsCar, PassengerCar}

P[[type]] = {〈〈audiTT , SportsCar〉, 0.8〉, 〈〈audiTT , PassengerCar〉, 0.72〉}
P[[sc]] = {〈〈SportsCar, PassengerCar〉, 0.9〉}

C[[SportsCar ]] = {〈audiTT , 0.8〉}
C[[PassengerCar ]] = {〈audiTT , 0.72〉}

tI = t for all t ∈ UL

I |= G I is a model of G
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Deduction System for fuzzy RDFS

Very simple:

(AG)
〈τ1,n1〉, ..., 〈τk ,nk , {τ1, . . . τk} `RDFS τ〉

〈τ,
⊗

i λi〉
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Deduction System for fuzzy RDFS

1 Simple:

G
G′ for G′ ⊆ G

2 Subproperty:

(a)
〈(A, sp, B), n〉,〈(B, sp,C),m〉

〈(A, sp,C), n ⊗ m〉 (b)
〈(A, sp, B), n〉,〈(X , A, Y ),m〉
〈(X , B, Y ), n ⊗ m〉

3 Subclass:

(a)
〈(A, sc, B), n〉,〈(B, sc,C),m〉

〈(A, sc,C), n ⊗ m〉 (b)
〈(A, sc, B), n〉,〈(X , type, A),m〉
〈(X , type, B), n ⊗ m〉

4 Typing:

(a)
〈(A, dom, B), n〉,〈(X , A, Y ),m〉
〈(X , type, B), n ⊗ m〉 (b)

〈(A, range, B), n〉,〈(X , A, Y ),m〉
〈(Y , type, B), n ⊗ m〉

5 Implicit Typing:

(a)
〈(A, dom, B), n〉,〈(C, sp, A),m〉,〈(X ,C, Y ), r〉

〈(X , type, B), n ⊗ m ⊗ r〉

(b)
〈(A, range, B), n〉,〈(C, sp, A),m〉,〈(X ,C, Y ), r〉

〈(Y , type, B), n ⊗ m ⊗ r〉

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 112 / 239



Fuzzy RDFS Query Answering
We assume that a fuzzy RDF graph G is ground and closed, i.e., G is closed under the application of the rules (2)-(5)

Conjunctive query: extends a crisp RDF query and is of the form

〈q(x), s〉 ← ∃y.〈τ1, s1〉, . . . , 〈τn, sn〉, s = f (s1, . . . , sn, p1(z1), . . . , ph(zh))

where additionally
zi are tuples of terms in UL or variables in x or y;
pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple tj in UL a score pj (tj ) ∈ [0, 1]. Such predicates are
called expensive predicates as the score is not pre-computed off-line, but is computed on query execution. We
require that an n-ary fuzzy predicate p is safe, that is, there is not an m-ary fuzzy predicate p′ such that m < n
and p = p′. Informally, all parameters are needed in the definition of p;
f is a scoring function f : ([0, 1])n+h → [0, 1], which combines the scores si of the n triples and the h fuzzy
predicates into an overall score to be assigned to the rule head. We assume that f is monotone, that is, for each
v, v′ ∈ ([0, 1])n+h such that v ≤ v′, it holds f (v) ≤ f (v′), where (v1, . . . , vn+h) ≤ (v′1, . . . , v′n+h) iff
vi ≤ v′i for all i ;
the scoring variables s and si are distinct from those in x and y and s is distinct from each si

If clear from the context, we may omit the exitential quantification ∃y

We may omit si and in that case si = 1 is assumed

s = f (s1, . . . , sn, p1(z1), . . . , ph(zh)) is called the scoring atom. We may also omit the scoring atom and in that case
s = 1 is assumed.
For instance, the query

〈q(x), s〉 ← 〈(x, type, SportCar), s1〉, (x, hasPrice, y), s = s1 · cheap(y)

where e.g. cheap(p) = ls(0, 10000, 12000), has intended meaning to retrieve all cheap sports car. Any answer is scored
according to the product of being cheap and a sports car
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Fuzzy RDF Query Answering (cont.)

Top-k Retrieval: Given a fuzzy graph G, and a query q, retrieve k
answers 〈t, s〉 with maximal scores and rank them in
decreasing order relative to the score s, denoted

ansk (G,q) = Topk answer(G,q)

A simple query answering procedure is the following:
Compute the closure of a graph off-line
Store the fuzzy RDF triples into a relational database supporting
Top-k retrieval (e.g., RankSQL, Postgres)
Translate the fuzzy query into a top-k SQL statement
Execute the SQL statement over the relational database
Few systems exists, e.g. FuzzyRDF, AnQL (http://anql.deri.org/)
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Example

G =


〈(o1, IsAbout , snoopy), 0.8〉 〈(o2, IsAbout ,woodstock), 0.9〉
(snoopy , type, dog) (woodstock , type, bird)
〈(Bird , sc,SmallAnimal), 0.7〉 〈(Dog, sc,SmallAnimal), 0.4〉
(dog, sc,Animal) (bird , sc,Animal)
(SmallAnimal, sc,Animal)


Consider the query

〈q(x), s〉 ← 〈(x , IsAbout , y), s1〉, 〈(y , type,Animal), s2〉, s = s1 · s2

Then (under any t-norm)

ans(G, q) = {〈o1, 0.32〉, 〈o2, 0.63〉}, ans1(G, q) = {〈o2, 0.63〉}
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Annotation domains & RDFS

Generalisation of fuzzy RDFS
a triple is annotated with a value λ taken from a so-called
annotation domain, rather than with a value in [0,1]
allows to deal with several domains (such as, fuzzy, temporal,
provenance) and their combination, in a uniform way

Time

(umberto,workedFor , IEI)
true during 1992–2001

Fuzzyness
(WingateHotel , closeTo,RR11Venue)
true to some degree

Provenance
(umberto, knows,didier)
true in http://www.straccia.info/foaf.rdf
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Annotation Domain: idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉
where ⊕ is >-annihilating, i.e.

1 ⊕ is idempotent, commutative, associative;
2 ⊗ is commutative and associative;
3 ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;
4 ⊗ is distributive over ⊕, i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

Induced partial order:

λ1 � λ2 ⇐⇒ λ1 ⊕ λ2 = λ2

Annotated triple: for λ ∈ L

〈(s,p,o), λ〉
For instance,

〈(umberto,workedFor , IEI), [1992, 2001]〉

〈(WingateHotel, closeTo,RR11Venue), 0.8〉

〈(umberto, knows, didier),http://www.straccia.info/foaf.rdf〉
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Annotation Domains: Examples

Illustration by Example: Time

An Annotation Domain consists of

A set L of annotation values
e.g. [1968, 2000] and {[1968, 2000], [2003, 2004]}

An order between elements:
if λ � λ′, then 〈τ, λ〉 is true to a lesser extent than 〈τ ′, λ′〉
e.g. [1968, 2000] � [1952, 2007] (� is ⊆)

Top and bottom ellements:
> = [−∞,+∞],⊥ = ∅

“Conjunction” function ⊗
[1992, 2001]⊗ [1968, 2000] = [1992, 2000] (⊗ is ∩)

“Combination” function ⊕
[1992, 2001]⊕ [1995, 2003] = [1992, 2003]
[1992, 1996]⊕ [2001, 2009] = {[1992, 1996], [2001, 2009]}
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Examples

Fuzzy: 〈(WingateHotel , closeTo,RR11Venue),0.8〉
L = [0,1]
⊗ = any t-norm
∨ = max

Provenance: 〈(umberto, knows,didier),p〉
L = DNF propositional formulae over URIs
⊗ = ∧
∨ = ∨

Multiple Domains: our frameworks allows to combine domains

〈(CountryXXX , type,Dangerous), 〈[1975,1983],0.8,0.6〉〉

Time × Fuzzy × Trust
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Inference rule:

〈τ1, λ1〉, . . . , 〈τk , λk , {τ1, . . . , τk} `RDFS τ〉
〈τ,
⊗

i λi〉

Annotated conjunctive queries are as fuzzy queries, except that now
variables s and si range over L in place of [0,1];

A query answering procedure is similar as for the fuzzy case: compute
the closure, store it on a relation database and transform an annotated
CQ into a SQL query

Computational complexity: same as for crisp RDFS plus the cost of ⊗, ⊕
and the scoring function f in the body of a query

A prototype Prolog implementation is available

http://anql.deri.org/
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The case of Description Logics
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Description Logics (DLs)

Concept/Class: names are equivalent to unary predicates
In general, concepts equiv to formulae with one free variable

Role or attribute: names are equivalent to binary predicates
In general, roles equiv to formulae with two free variables

Taxonomy: Concept and role hierarchies can be expressed
Individual: names are equivalent to constants
Operators: restricted so that

Language is decidable and, if possible, of low complexity
No need for explicit use of variables

Restricted form of ∃ and ∀
Features such as counting can be succinctly expressed
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Basic ingredients: descriptions of classes, properties, and their
instances, such as

a:C, meaning that individual a is an instance of concept/class C

a:Person u ∀hasChild.Femal

(a,b):R, meaning that the pair of individuals 〈a,b〉 is an instance of
the property/role R

(tom,mary):hasChild

C v D, meaning that the class C is a subclass of class D

Person v ∀hasChild.Person
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The DL Family

A given DL is defined by set of concept and role forming operators

Basic language: ALC (Attributive Language with Complement)

Syntax Semantics Example
C,D → > | >(x)

⊥ | ⊥(x)
A | A(x) Human

C u D | C(x) ∧ D(x) Human u Male
C t D | C(x) ∨ D(x) Nice t Rich
¬C | ¬C(x) ¬Meat
∃R.C | ∃y.R(x, y) ∧ C(y) ∃has_child.Blond
∀R.C ∀y.R(x, y)⇒ C(y) ∀has_child.Human

C v D ∀x.C(x)⇒ D(x) Happy_Father v Man u ∃has_child.Female
a:C C(a) John:Happy_Father
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DL Semantics

Semantics is given in terms of an interpretation I = (∆I , ·I ), where

∆I is the domain (a non-empty set)

·I is an interpretation function that maps:

Concept (class) name A into a subset AI of ∆I

Role (property) name R into a subset RI of ∆I × ∆I

Individual name a into an element of ∆I × ∆I s.t. aI 6= bI if a 6= b (UNA)

Interpretation function ·I is extended to concept expressions:

>I = ∆I

⊥I = ∅
(C1 u C2)I = C1

I ∩ C2
I

(C1 t C2)I = C1
I ∪ C2

I

(¬C)I = ∆I \ CI

(∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(∀R.C)I = {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}

Finally, we say that

I is a model of C v D, written I |= C v D, iff CI ⊆ DI

I is a model of a:C, written I |= a:C, iff aI ∈ CI

I is a model of (a, b):R, written I |= (a, b):R, iff 〈aI , bI〉 ∈ RI
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Note on DL Naming

AL: C,D −→ > | ⊥ |A |C u D | ¬A | ∃R.> |∀R.C
C: Concept negation, ¬C. Thus, ALC = AL+ C
S: Used for ALC with transitive roles R+

U : Concept disjunction, C1 t C2

E : Existential quantification, ∃R.C
H: Role inclusion axioms, R1 v R2, e.g. is_component_of v is_part_of
N : Number restrictions, (≥ n R) and (≤ n R), e.g. (≥ 3 has_Child) (has at least 3

children)
Q: Qualified number restrictions, (≥ n R.C) and (≤ n R.C),

e.g. (≤ 2 has_Child .Adult) (has at most 2 adult children)
O: Nominals (singleton class), {a}, e.g. ∃has_child .{mary}.

Note: a:C equiv to {a} v C and (a, b):R equiv to {a} v ∃R.{b}
I: Inverse role, R−, e.g. isPartOf = hasPart−

F : Functional role, f , e.g. functional(hasAge)

R+: transitive role, e.g. transitive(isPartOf )

For instance,

SHIF = S +H+ I + F = ALCR+HIF OWL-Lite
SHOIN = S +H+O + I +N = ALCR+HOIN OWL-DL
SROIQ = S +R+O + I +Q = ALCR+ROIN OWL 2
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Semantics of Additional Constructs

H: Role inclusion axioms, I |= R1 v R2 iff R1
I ⊆ R1

I

N : Number restrictions, (≥ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≥ n},
(≤ n R)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI}| ≤ n}

Q: Qualified number restrictions,
(≥ n R.C)I = {x ∈ |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≥ n},
(≤ n R.C)I = {x ∈ ∆I : |{y | 〈x , y〉 ∈ RI ∧ y ∈ CI}| ≤ n}

O: Nominals (singleton class), {a}I = {aI}

I: Inverse role, (R−)
I

= {〈x , y〉 | 〈y , x〉 ∈ RI}
F : Functional role, I |= fun(f ) iff ∀z∀y∀z if 〈x , y〉 ∈ fI and 〈x , z〉 ∈ fI the y = z

R+: transitive role, (R+)I = {〈x , y〉 | ∃z such that 〈x , z〉 ∈ RI ∧ 〈z, y〉 ∈ RI}
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Basics on Concrete Domains

Concrete domains: reals, integers, strings, . . .

(tim, 14):hasAge
(sf , “SoftComputing”):hasAcronym
(source1, “ComputerScience”):isAbout
(service2, “InformationRetrievalTool ′′):Matches
Minor = Person u ∃hasAge. ≤18

Semantics: a clean separation between “object” classes and concrete domains

D = 〈∆D,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete domain predicates d with a predefined
arity n and fixed interpretation dD ⊆ ∆n

D
Concrete properties: RI ⊆ ∆I ×∆D

Notation: (D). E.g., ALC(D) is ALC + concrete domains

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 128 / 239



DL Knowledge Base

A DL Knowledge Base is a pair K = 〈T ,A〉, where

T is a TBox
containing general inclusion axioms of the form C v D,
concept definitions of the form A = C
primitive concept definitions of the form A v C
role inclusions of the form R v P
role equivalence of the form R = P

A is a ABox
containing assertions of the form a:C
containing assertions of the form (a, b):R

An interpretation I is a model of K, written I |= K iff I |= T and I |= A, where

I |= T (I is a model of T ) iff I is a model of each element in T
I |= A (I is a model of A) iff I is a model of each element in A
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Basic Inference Problems (Formally)

Consistency: Check if knowledge is meaningful

Is K satisfiability? 7→ Is there some model I of K ?
Is C satisfiability? 7→ CI 6= ∅ for some some model I of K ?

Subsumption: structure knowledge, compute taxonomy

K |= C v D ? 7→ Is it true that CI ⊆ DI for all models I of K ?

Equivalence: check if two classes denote same set of instances

K |= C = D ? 7→ Is it true that CI = DI for all models I of K ?

Instantiation: check if individual a instance of class C

K |= a:C ? 7→ Is it true that aI ∈ CI for all models I of K ?

Retrieval: retrieve set of individuals that instantiate C

Compute the set {a | K |= a:C}
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Reduction to Satisfiability

Problems are all reducible to KB satisfiability

Subsumption: K |= C v D iff 〈T ,A ∪ {a:C u ¬D}〉 not satisfiable,
where a is a new individual

Equivalence: K |= C = D iff K |= C v D and K |= D v C
Instantiation: K |= a:C iff 〈T ,A ∪ {a:¬C}〉 not satisfiable

Retrieval: The computation of the set {a | K |= a:C} is reducible to
the instance checking problem
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Reasoning in DLs: Basics

OWL 2: tableaux based algorithms
OWL 2 EL: structural based algorithms
OWL 2 QL: query rewriting based algorithms
OWL 2 RL: logic programming based algorithms
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Tableaux: Basics

Tableaux algorithm deciding satisfiability

Try to build a tree-like model I of the KB

Decompose concepts C syntactically

Apply tableau expansion rules
Infer constraints on elements of model

Tableau rules correspond to constructors in logic (u,t, . . . )

Some rules are nondeterministic (e.g., t,≤)
In practice, this means search

Stop when no more rules applicable or clash occurs

Clash is an obvious contradiction, e.g., A(x),¬A(x)

Cycle check (blocking) may be needed for termination
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Negation Normal Form (NNF)

We have to transform concepts into Negation Normal Form: push
negation inside using de Morgan’ laws

¬> 7→ ⊥
¬ ⊥ 7→ >
¬¬C 7→ C

¬(C1 u C2) 7→ ¬C1 t ¬C2
¬(C1 t C2) 7→ ¬C1 u ¬C2

and
¬(∃R.C) 7→ ∀R.¬C
¬(∀R.C) 7→ ∃R.¬C

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 134 / 239



Completion-Forest

This is a forest of trees, where
each node x is labelled with a set L(x) of concepts

each edge 〈x, y〉 is labelled with L(〈x, y〉) = {R} for some role R (edges correspond to relationships between

pairs of individuals)

The forest is initialized with
a root node a, labelled L(x) = ∅ for each individual a occurring in the KB

an edge 〈a, b〉 labelled L(〈a, b〉) = {R} for each (a, b):R occurring in the KB

Then, for each a:C occurring in the KB, set L(a)→ L(a) ∪ {C}

The algorithm expands the tree either by extending L(x) for some node x or by adding new leaf nodes.

Edges are added when expanding ∃R.C

A completion-forest contains a clash if, for a node x , {C,¬C} ⊆ L(x)

If nodes x and y are connected by an edge〈x, y〉, then y is called a successor of x and x is called a predecessor of y .
Ancestor is the transitive closure of predecessor.

A node y is called an R-successor of a node x if y is a successor of x and L(〈x, y〉) = {R}.

The algorithm returns “satisfiable" if rules can be applied s.t. they yield a clash-free, complete (no more rules can be
applied) completion forest
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ALC Tableau rules without GCI’s

Rule Description
(u) if 1. C1 u C2 ∈ L(x) and

2. {C1,C2} 6⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(t) if 1. C1 t C2 ∈ L(x) and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x) and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(〈x , y〉) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x) and
2. x has an R-successor y with C 6∈ L(y)

then L(y)→ L(y) ∪ {C}

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 136 / 239



Example

Is ∃R.C u ∀R.(¬C t ¬D) u ∃R.D satisfiable? Yes.

x
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Example
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x
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Example

Is ∃R.C u ∀R.(¬C t ¬D) u ∃R.D satisfiable? Yes.

x
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Clash
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Example

Is ∃R.C u ∀R.(¬C t ¬D) u ∃R.D satisfiable? Yes.

x

L(x) = {∃R.C, ∀R.(¬C t ¬D), ∃R.D}

�
��	

R

y1

L(y1) = {C,¬C t ¬D,¬D}
@
@@R

R

y2

L(y2) = {D,¬C t ¬D,¬C}

Finished. No more rules applicable and the tableau is complete and clash-free

Hence, the concept is satisfiable

The tree corresponds to a model I = (∆I , ·I )

The nodes are the elements of the domain: ∆I = {x, y1, y2}

For each atomic concept A, set AI = {z | A ∈ L(z)}

CI = {y1}, DI = {y2}

For each role R, set RI = {〈x, y〉 | there is an edge labeled R from x to y}

RI = {〈x, y1〉, 〈x, y2〉}

It can be shown that x ∈ (∃R.C u ∀R.(¬C t ¬D) u ∃R.D)I 6= ∅
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Soundness and Completeness

Theorem
Let A be an ALC ABox and F a completion-forest obtained by applying
the tableau rules to A. Then

1 The rule application terminates;
2 If F is clash-free and complete, then F defines a (canonical) (tree)

model for A; and
3 If A has a model I, then the rules can be applied such that they

yield a clash-free and complete completion-forest.
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KBs with GCIs

We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable with T 6= ∅?

Basic idea: since t(C v D) ≡ ∀x .¬t(C, x) ∨ t(D, x)

we use the rule: for each C v D ∈ T , add ¬C t D to every node

But, termination is not guaranteed
E.g., consider K = 〈T ,A〉

T = {Human v ∃hasMother .Human}
A = {umberto:Human}

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human}
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KB Satisfiability

We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable?
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But, termination is not guaranteed
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We have seen how to test the satisfiability of an ABox A
But, how can we check if a KB K = 〈T ,A〉 is satisfiable?
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umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human,¬Human}
Clash
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.
.
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Node Blocking in ALC

When creating new node, check ancestors for equal label set

If such a node is found, new node is blocked

No rule is applied to blocked nodes

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y1
L(y1) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y2L(y2) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human} blocked: L(y1) = L(y2)
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Node Blocking in ALC

When creating new node, check ancestors for equal label set

If such a node is found, new node is blocked

No rule is applied to blocked nodes

umbertoL(umberto) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y1
L(y1) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human}

?
hasMother

y2L(y2) = {Human,¬Human t ∃hasMother.Human, ∃hasMother.Human} blocked: L(y1) = L(y2)

IhasMother

Block represents cyclical model
∆I = {umberto, y1, y2}
HumanI = {umberto, y1, y2}
hasMotherI = {〈umberto, y1〉, 〈y1, y2〉, 〈y2, y1〉}
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Blocking in ALC

A non-root node x is blocked if for some ancestor y , y is blocked
or L(x) = L(y), where y is not a root node
A blocked node x is indirectly blocked if its predecessor is blocked,
otherwise it is directly blocked
If x is directly blocked, it has a unique ancestor y such that
L(x) = L(y)

if there existed another ancestor z such that L(x) = L(z) then
either y or z must be blocked
If x is directly blocked and y is the unique ancestor such that
L(x) = L(y), we will say that y blocks x
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ALC Tableau rules with GCI’s

Rule Description
(u) if 1. C1 u C2 ∈ L(x), x is not indirectly blocked and

2. {C1,C2} 6⊆ L(x)
then L(x)→ L(x) ∪ {C1,C2}

(t) if 1. C1 t C2 ∈ L(x), x is not indirectly blocked and
2. {C1,C2} ∩ L(x) = ∅

then L(x)→ L(x) ∪ {C} for some C ∈ {C1,C2}

(∃) if 1. ∃R.C ∈ L(x), x is not blocked and
2. x has no R-successor y with C ∈ L(y)

then create a new node y with L(〈x , y〉) = {R} and L(y) = {C}

(∀) if 1. ∀R.C ∈ L(x), x is not indirectly blocked and
2. x has an R-successor y with C 6∈ L(y)

then L(y)→ L(y) ∪ {C}
(v) if 1. C v D ∈ T , x is not indirectly blocked and

2. {nnf (¬C),D} ∩ L(x) = ∅
then L(x)→ L(x) ∪ {E} for some

E ∈ {nnf (¬C),D} (nnf (¬C) is NNF of ¬C)
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Soundness and Completeness

Theorem
Let K be an ALC KB and F a completion-forest obtained by applying
the tableau rules to K. Then

1 The rule application terminates;
2 If F is clash-free and complete, then F defines a (canonical) (tree)

model for K; and
3 If K has a model I, then the rules can be applied such that they

yield a clash-free and complete completion-forest.
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Fuzzy DLs Basics

We have seen how to “fuzzify” classical sets and FOL
Fuzzy statements are of the form 〈φ,n〉, where φ is a statement and
n ∈ [0,1]

The natural extension to fuzzy DLs consists then in replacing φ
with a DL expression
Several fuzzy variants of DLs have been proposed: they can be
classified according to

The DL resp. ontology language that they generalize
The allowed fuzzy constructs
The underlying fuzzy logic
Their reasoning algorithms and computational complexity results
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In classical DLs, a concept C is interpreted by an interpretation I
as a set of individuals
In fuzzy DLs, a concept C is interpreted by I as a fuzzy set of
individuals
Each individual is instance of a concept to a degree in [0,1]

Each pair of individuals is instance of a role to a degree in [0,1]
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〈a:C,n〉 states that a is an instance of concept/class C with
degree at least n
〈(a,b):R,n〉 states that 〈a,b〉 is an instance of relation R with
degree at least n
〈C1 v C2,n〉 states a vague subsumption relationship

The FOL statement ∀x .C1(x)→ C2(x) is true to degree at least n

Note: one may find also fuzzy DL expressions 〈α≥n〉, 〈α≤n〉,
〈α> n〉, 〈α< n〉, and 〈α = n〉
We use the form 〈α,n〉, i.e. 〈α≥n〉 only

Remind that graded axioms are intended to be produced semi- or
automatically
Hardly they may have the form 〈α≤n〉, 〈α> n〉 or 〈α< n〉
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The semantics is an immediate consequence of the First-Order-Logic translation of DLs expressions

Interpretation:
I = ∆I

CI : ∆I → [0, 1]

RI : ∆I × ∆I → [0, 1]

⊗ = t-norm
⊕ = s-norm
¬ = negation
⇒ = implication

Concepts:

Syntax Semantics
C,D −→ > | >I (x) = 1

⊥ | ⊥I (x) = 0
A | AI (x) ∈ [0, 1]

C u D | (C1 u C2)I (x) = C1
I (x)⊗ C2

I (x)

C t D | (C1 t C2)I (x) = C1
I (x)⊕ C2

I (x)

C → D | (C → D)I (x) = CI (x)⇒ DI (x)

¬C | (¬C)I (x) = ¬CI (x)

∃R.C | (∃R.C)I (x) = supy∈∆I RI (x, y)⊗ CI (y)

∀R.C (∀R.C)I (x) = infy∈∆I RI (x, y)⇒ CI (y)}
{a} {a}I (x) = 1 if aI = x, else 0

Assertions: 〈a:C, r〉, I |= 〈a:C, r〉 iff CI (aI ) ≥ r (similarly for roles)

General Inclusion Axioms: 〈C v D, r〉,

I |= 〈C v D, r〉 iff infx∈∆I CI (x)⇒ DI (x) ≥ r
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Some Remarks

Like for fuzzy FOL, ∀ and ∃ are not complementary in general:
i.e. ∀R.C 6≡ ¬∃R.¬C
∀R.C ≡ ¬∃R.¬C under Łukasiewicz logic and SFL
〈C v D,n〉 may be rewritten as 〈> v C → D,n〉
In early works, a fuzzy GCI is of the form C v D with semantics:

I is a model of C v D iff for every x ∈ ∆I we have that
CI(x) ≤ DI(x)
This is the same of fuzzy axiom 〈> v C →x D,1〉, where→x is an
r -implication

Disjointness: use 〈C u D v⊥,1〉 rather than 〈C v ¬D,1〉
they are not the same, e.g. 〈A v ¬A, 1〉 says that AI (x) ≤ 0.5, for all I and for all x ∈ ∆I
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Witnessed Interpretation

Witnessed Interpretation:
Infima and suprema are attained at some point

(∃R.C)I(x) = RI(x , y)⊗ CI(y) for some y ∈ ∆I

(∀R.C)I(x) = RI(x , y)⇒ CI(y) for some y ∈ ∆I

(C v D)I = CI(x)⇒ DI(x) for some x ∈ ∆I

It is customary to stick to witnessed interpretations only
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Fuzzy knowledge base: K = 〈T ,A〉
T is a fuzzy TBox, that is a finite set of fuzzy GCI
A is a fuzzy ABox, that is a finite set of fuzzy assertions

Acyclic fuzzy ontologies: TBox with axioms of the form

A vn C (primitive GCI)
A ṽ C (primitive GCI)
A =̃ C (definitional GCI)

A concept name
A vn C shorthand for 〈> v A→ C,n〉
No nominal {a} occurs in the TBox
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We say that
concept name A directly uses concept name B w.r.t. T , denoted A→T B, if
A is the head of some axiom τ ∈ T such that B occurs in the body of τ
concept name A uses concept name B w.r.t. T , denoted A T B, if there
exist concept names A1, . . . ,An, such that A1 = A, An = B and, for every
1 ≤ i < n, it holds that Ai →T Ai+1

TBox T is cyclic (acyclic) if there is (no) A such that A T A
TBox T is unfoldable if

T is acyclic
If A=̃C ∈ T then A does not occur in the head of any other axiom
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I satisfies (is a model of) K = 〈T ,A〉 iff it satisfies each element in
A and T
A fuzzy KB K = 〈T ,A〉 entails an axiom E , denoted K |= E , iff
every model of K satisfies E
We say that two concepts C and D are equivalent, denoted
C ≡K D iff in every model I of K and for all x ∈ ∆I ,
CI(x) = DI(x)

Best entailment degree: for assertion of GCI φ

bed(K, φ) = sup {r | K |= 〈φ, r〉}

Best satisfiability degree: for concept C

bsd(K,C) = sup
I|=K

sup
x∈∆I

CI(x) .
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Some Salient Fuzzy Concept Equivalences

Property Łukasiewicz Gödel Product SFL
C u ¬C ≡⊥ • • •
C t ¬C ≡ > •
C u C ≡ C • •
C t C ≡ C • •
¬¬C ≡ C • •

C → D ≡ ¬C t D • •
C → D ≡ ¬D → ¬C • •
¬ (C → D) ≡ C u ¬D • •
¬ (C u D) ≡ ¬C t ¬D • • • •
¬ (C t D) ≡ ¬C u ¬D • • • •

C u (D t E) ≡ (C u D) t (C u E) • •
C t (D u E) ≡ (C t D) u (C t E) • •

∃R.C ≡ ¬∀R.¬C • •
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Towards Fuzzy OWL 2 and its Profiles

Recall that OWL 2 relates to SROIQ(D)

We need to extend the semantics to fuzzy SROIQ(D)

Additionally, we add
modifiers (e.g., very )
concrete fuzzy concepts (e.g., Young)
both additions have explicit membership functions
other extensions:

aggregation functions: weighted sum, OWA, fuzzy integrals
fuzzy rough sets, fuzzy spatial, fuzzy numbers
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Number Restrictions, Inverse, Transitive roles, . . .
The semantics of the concept (≥ n R.C) is: ∧ interpreted as Gödel t-norm

∃y1, . . . , yn.
n∧

i=1

R(x, yi ) ∧ C(yi ) ∧
∧

1≤i<j≤n

yi 6= yj

The semantics of the concept (≤ n R.C) is: ∧ interpreted as Gödel t-norm

(≤ n R)I (x) = ∀y1, . . . , yn+1.
n+1∧
i=1

(R(x, yi ) ∧ C(yi ))⇒
∨

1≤i<j≤n+1

yi = yj

Note: (≥ 1 R) ≡ ∃R.>

For transitive roles R we impose: for all x, y ∈ ∆I

RI (x, y) ≥ sup
z∈∆I

RI (x, z)⊗ RI (z, y)

For inverse roles we have for all x, y ∈ ∆I

RI (x, y) = RI (y, x)

The semantics of fucntional roles fun(R) is

∀x∀y∀z. R(x, y) ∧ R(x, z)⇒ y = z

Similar for other SROIQ constructs
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Fuzzy Concrete Domains

E.g., Small ,Young,High,etc. with explicit membership function
Use the idea of concrete domains:

D = 〈∆D,ΦD〉
∆D is an interpretation domain
ΦD is the set of concrete unary fuzzy domain predicates d and fixed
interpretation dD : ∆D → [0,1]

Specifically,

d → ls(a,b) | rs(a,b) | tri(a,b, c) | trz(a,b, c,d)
| ≥v | ≤v | =v

C,D → ∀T .d | ∃T .d
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Representation of Young Person:

Minor = Person u ∃hasAge. ≤18
YoungPerson = Person u ∃hasAge.ls(10,30)

Representation of Heavy Rain:

HeavyRain = Rain u ∃hasPrecipitationRate.rs(5,7.5)

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 190 / 239



Modifiers

Very , moreOrLess, slightly , etc.
Fuzzy modifier m with function fm : [0,1]→ [0,1]

C → m(C) | ∀T .m(d) | ∃T .m(d)

where m is a linear modifier
Representation of Sport Car

SportsCar = Car u ∃speed .very(rs(80,250))

Representation of Very Heavy Rain

VeryHeavyRain = Rain u ∃hasPrecipitationRate.very(rs(5,7.5)) .
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Aggregation Operators

Aggregation operators: aggregate concepts, using functions such as the
mean, median, weighted sum operators
Given an n-ary aggregation operator @ : [0,1]n → [0,1]

We fuzzy concepts by allowing to apply @ to n concepts C1, . . . ,Cn,
i.e.

C → @(C1, . . . ,Cn)

Semantics:

@(C1, . . . ,Cn)I(x) = @(CI1 (x), . . . ,CIn (x)) .

Allows to express the concept

GoodHotel = 0.3 · ExpensiveHotel + 0.7 · LuxuriousHotel

The membership function of good hotels is the weighted sum of
being an expensive and luxurious hotel
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Some Applications

Information retrieval
Recommendation systems
Image interpretation
Ambient intelligence
Ontology merging
Matchmaking
decision making
Summarization
Robotics perception
Software design
Machine learning
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Example (Graded Entailment)

audi_tt mg ferrari_enzo

Car speed
audi_tt 243
mg ≤ 170
ferrari_enzo ≥ 350

SportsCar = Car u ∃hasSpeed.very(High)

K |= 〈ferrari_enzo:SportsCar, 1〉
K |= 〈audi_tt :SportsCar, 0.92〉
K |= 〈mg:¬SportsCar, 0.72〉
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Example (Graded Subsumption)

Minor = Person u ∃hasAge. ≤18

YoungPerson = Person u ∃hasAge.Young
fun(hasAge)

K |= 〈Minor v YoungPerson, 0.6〉

Note: without an explicit membership function of Young, this inference cannot be
drawn

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 195 / 239



Example (Simplified Matchmaking)

A car seller sells an Audi TT for 31500e, as from the catalog price.

A buyer is looking for a sports-car, but wants to to pay not more than around 30000e

Classical sets: the problem relies on the crisp conditions on price

More fine grained approach: to consider prices as fuzzy sets (as usual in negotiation)
Seller may consider optimal to sell above 31500e, but can go down to 30500e
The buyer prefers to spend less than 30000e, but can go up to 32000e

AudiTT = SportsCar u ∃hasPrice.rs(30500, 31500)
Query = SportsCar u ∃hasPrice.ls(30000, 32000)

Highest degree to which the concept
C = AudiTT u Query
is satisfiable is 0.75 (the degree to which the Audi TT and the query matches is 0.75)

The car may be sold at 31250e
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Example: Learning fuzzy GCIs from data

Learning of fuzzy GCIs from crisp data

Use Case: What are Good hotels, using TripAdvisor data?

Given
OWL 2 Ontology about meaningful city entities and their descriptions
TripAdvisor data about hotels and user judgments

We may learn that in e.g., Pisa, Italy

〈∃hasAmenity .Babysitting u ∃hasPrice.fair v Good_Hotel, 0.282〉

“A hotel having babysitting as amenity and a fair price is a good hotel (to
degree 0.282)”

Real valued price attribute hasPrice has been automatically fuzzyfied
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Example: Multi-Criteria Decision Making
We have to select among two sites, A1, A2

There are two criteria (C1 -Transportation Issues, and C2 -Public Nuisance) for judgement

There are two experts (E1, E2) that make judgments

The decision matrix of the experts is shown below:

E1 Criteria
0.48 0.52

Alter. C1 C2

x1 A1 tri(0.6, 0.7, 0.8) tri(0.9, 0.95, 1.0)
x2 A2 tri(0.6, 0.7, 0.8) tri(0.4, 0.5, 0.6)

E2 Criteria
0.52 0.48

Alter. C1 C2

x1 A1 tri(0.55, 0.6, 0.7) tri(0.4, 0.45, 0.5)
x2 A2 tri(0.35, 0.4, 0.45) tri(0.5, 0.55, 0.6)

For each expert k = 1, 2, for each alternative i = 1, 2 and for each criteria j = 1, 2, we define the concept

Pk
ij = ∃hasScore.ak

ij

Now, for each expert k and alternative i , we define the weighted concept

Ak
i = wk

1 · Pk
i1 + wk

2 · Pk
i2

Finally, we combine the two experts outcome, by defining the weighted concept

Ai = 0.5 · A1
i + 0.5 · A2

i

It can be verified that rv(K, A1) = bsd(K, A1) = 0.26 and rv(K, A2) = bsd(K, A2) = 0.37
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Representing Fuzzy OWL Ontologies in OWL

OWL 2 is W3C standard, with classical logic semantics
Hence, cannot support natively Fuzzy Logic

However, Fuzzy OWL 2, has been defined using OWL 2
Uses the axiom annotation feature of OWL 2

Any Fuzzy OWL 2 ontology is a legal OWL 2 ontology

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 199 / 239



A java parser for Fuzzy OWL 2 exists

Protégé plug-in exists to encode Fuzzy OWL ontologies
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Reasoning Problems and Algorithms

Consistency problem:
Is K satisfiable?
Is C coherent, i.e. is CI(x) > 0 for some I |= K and x ∈ ∆I?

Instance checking problem:
Does K |= 〈a:C, n〉 hold?

Subsumption problem:
Does K |= 〈C v D, n〉 hold?

Best entailment degree problem:
What is bed(K, φ)?

Best satisfiability degree problem:
What is bsd(K, φ)?

Instance retrieval problem:
Compute the set {〈a, n〉 | n = bed(K, a:C)}

Top-k retrieval problem:
Compute the top-k ranked elements of {〈a, n〉 | n = bed(K, a:C)}
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Some Reductions

K is satisfiable iff bsd(K, a:⊥) > 0, where a is a new individual.

C is coherent w.r.t.K if one of the following holds:
K ∪ {〈a:C > 0〉} is satisfiable, where a is a new individual
K 6|= 〈C v⊥, 1〉

bsd(K,C) > 0

K |= 〈a:C, n〉 if one of the following holds:
K ∪ {〈a:C < n〉} is not satisfiable

bed(K, a:C) ≥ n

K |= 〈C v D, n〉 if one of the following holds:
K ∪ {〈a:C → D < n〉} is not satisfiable, where a is a new individual

bed(K,C v D) ≥ n

We have that

bed(K, φ) = min x. such thatK ∪ {〈φ ≤ x〉} satisfiable

bsd(K, φ) = max x. such thatK ∪ {〈φ ≥ x〉} satisfiable
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Reasoning in Fuzzy DLs: Basics

Algorithms for fuzzy DLs: are a mixture of classical DLs reasoning
algorithms and algorithms for Mathematical Fuzzy Logic
Fuzzy OWL 2:

Fuzzy tableaux based algorithms
Tableaux and non deterministic tableaux
Operational Research

Reduction into classical DLs

Fuzzy OWL 2 EL: fuzzy structural based algorithms
Fuzzy OWL 2 QL: fuzzy query rewriting based algorithms
fuzzy OWL 2 RL: fuzzy logic programming based algorithms
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OR Fuzzy Tableaux: ALC under SFL over [0,1]

Works as for classical ALC on completion forests
Blocking is as for classical ALC
The completion forest is expanded by repeatedly applying inference
rules
The completion-forest is complete when none of the rules are
applicable

Additionally, at each inference step we add equational constraints
that have to hold
Eventually, the initial KB is satisfiable if the final set of equational
constraints has a solution

For the latter case, we may use a MILP solver
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Rule Description
(var) For variable xv :C add xv :C ∈ [0, 1] to CF . For variable x(v,w):R , add x(v,w):R ∈ [0, 1] to CF

(Ā) if ¬A ∈ L(v) then add xv :A = 1− xv :¬A to CF

(⊥) If ⊥ ∈ L(v) then add xv :⊥ = 0 to CF

(>) If > ∈ L(v) then add xv :> = 1 to CF

(u) if C1 u C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊗ xv :C2
≥ xv :C1 u C2

to CF

(t) if C1 t C2 ∈ L(v), v is not indirectly blocked
then L(v)→ L(v) ∪ {C1,C2}, and add xv :C1

⊕ xv :C2
≥ xv :C1 t C2

to CF

(∀) if ∀R.C ∈ L(v), v is not indirectly blocked
then L(w)→ L(w) ∪ {C}, and add xw :C ≥ xv :∀R.C ⊗ x(v,w):R to CF

(∃) if ∃R.C ∈ L(v), v is not blocked
then create new node w with L(〈v,w〉) = {R} and L(w) = {C}, and add xw :C ⊗ x(v,w):R ≥ xv :∃R.C to CF

(v) if 〈C v D, n〉 ∈ T , v is not indirectly blocked
then L(v)→ L(v) ∪ {C,D}, and add xv :D ≥ xv :C ⊗ n to CF
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Analytical Fuzzy Tableaux: ALC under SFL over [0,1]

Works as for classical ALC on completion forests
Node labels L(v) contain, rather than DL concept expressions,
expressions of the form 〈C, n〉

“The truth degree of being v instance of C is ≥ n"

Blocking is as for classical ALC
The completion forest is expanded by repeatedly applying inference rules
The completion-forest is complete when none of the rules are applicable

Additionally, we adapt the notion of clash: a clash is either

〈⊥,n〉 with n > 0; or
a pair 〈C,n〉 and 〈¬C,m〉 with n > 1−m

Eventually, the initial KB is satisfiable if there is a clash-free complete completion
forest
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(u). If (i) 〈C1 u C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉} 6⊆ L(v), and (iii) node v
is not indirectly blocked, then add 〈C1, n〉 and 〈C2, n〉 to L(v).

(t). If (i) 〈C1 t C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉} ∩ L(v) = ∅, and (iii)
node v is not indirectly blocked, then add some
〈C, n〉 ∈ {〈C1, n〉, 〈C2, n〉} to L(v).

(∀). If (i) 〈∀R.C, n〉 ∈ L(v), (ii) 〈R,m〉 ∈ L(〈v ,w〉) with m > 1− n, (iii)
〈C, n〉 6∈ L(w), and (iv) node v is not indirectly blocked, then add
〈C, n〉 to L(w).

(∃). If (i) 〈∃R.C, n〉 ∈ L(v), (ii) there is no 〈R, n1〉 ∈ L(〈v ,w〉) with
〈C, n2〉 ∈ L(w) such that min(n1, n2) ≥ n, and (iii) node v is not
blocked, then create a new node w , add 〈R, n〉 to L(〈v ,w〉) and add
〈C, n〉 to L(w).

(v). If (i) 〈> v D, n〉 ∈ T , (ii) 〈D, n〉 6∈ L(v), and (iii) node v is not indirectly
blocked, then add 〈D, n〉 to L(v).
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Non-Deterministic Analytic Fuzzy Tableaux

It’s a combination of the analogous method for fuzzy propositional
logic and analytical fuzzy tableau
Rule example:

(u). If (i) 〈C1 u C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that
m1 ⊗m2 = m with {〈C1,m1〉, 〈C2,m2〉} 6⊆ L(v), and (iii) node v is not
indirectly blocked, then add 〈C1,m1〉 and 〈C2,m2〉 to L(v)
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Reduction to Classical DLs

Same principle as for the reduction for propositional fuzzy logic
Needs adaption to the DL constructs: e.g. ∃,∀ and v
Examples of reduction rules for SFL:

ρ(A,≥ γ) = A≥γ
ρ(C u D,≥ γ) = ρ(C,≥ γ) u ρ(D,≥ γ)
ρ(C u D,≤ γ) = ρ(C,≤ γ) t ρ(D,≤ γ)
ρ(∀R.C,≥ γ) = ∀ρ(R, > 1− γ).ρ(C,≥ γ)
ρ(∀R.C,≤ γ) = ∃ρ(R,≥ 1− γ).ρ(C,≤ γ)
ρ(∃R.C,≥ γ) = ∃ρ(R,≥ γ).ρ(C,≥ γ)
ρ(∃R.C,≤ γ) = ∀ρ(R, > γ).ρ(C,≤ γ)

ρ(R,≥ γ) = R≥γ
ρ(〈a:C, γ〉) = {a:ρ(C,≥ γ)}

ρ(〈C v D, n〉) =
⋃
α∈N̄K+ ,α≤n{ρ(C,≥ α) v ρ(D,≥ α)}
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Computational Complexity

The bad news...undecidability!

Proposition
Assume that fuzzy GCIs are restricted to be classical, i.e. of the form 〈α, 1〉 only. Then for the
following fuzzy DLs, the KB satisfiability problem is undecidable over [0, 1]:

1 ELC with classical axioms only under Łukasiewicz logic and product logic;
2 ELC under any non Gödelt-norm ⊗;
3 ELC with concept assertions of the form 〈α = n〉 only under any non Gödelt-norm ⊗;
4 AL with concept implication operator→ and concept assertions of the form 〈α = n〉 only

under any non Gödelt-norm ⊗.
5 ELC under SFL with weighted sum constructor.
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Some decidability results..

Proposition
The KB satisfiability problem is decidable for

SROIQ under SFL over [0, 1] and Gödel logic over Ln

SROIN under Łukasiewicz logic over Ln

SHI under any continuous t-norm over Ln without TBox

ALC with concept implication operator→, for any continuous t-norm over [0, 1] with
acyclicTBox

SHIF with concept implication operator→, for Łukasiewicz logic over [0, 1] with
acyclicTBox

SI under any continuous t-norm over [0, 1] without TBox
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Annotation domains & OWL

For OWL 2, it it is like for RDFS, but annotation domain has to be
a complete lattice

satisfiability problem is inherited from crisp variant if lattice is finite,
else UNDECIDABLE (even for ALC with GCIs)

Exception for OWL profiles OWL EL, OWL QL and OWL RL:
annotation domains may be as for RDFS

the complexity is inherited from their crisp variants, plus complexity
of domain operators
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Reasoners

Languages supported by fuzzy ontology reasoners:

Reasoner Fuzzy DL Logic Degrees Other constructors GUI
fuzzyDL SHIF(D) Z, Ł General Modifiers, rough, aggregation •

Fire SHIN Z Numbers •
FPLGERDS ALC Ł Numbers Role negatio/top/bottom

YADLR ALCOQ Z, Ł General Local reflexivity
DeLorean SROIQ(D) Z, G General Modifiers, rough DL •
GURDL ALC General Numbers No
FRESG ALC(D) Z Numbers Fuzzy datatype expressions •

LiFR DLP fragment Z Numbers Weighted concepts
SMT-based solver ALE Π No No

DLMedia DLR–Lite Z, G Numbers Image similarity •
SoftFacts DLR–Lite Z, G Numbers Fuzzy datataypes •

ONTOSEARCH2 DL− LiteR General Numbers •
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Reasoning services offered by fuzzy ontology reasoners

Reasoner CON ENT CSAT SUB IR BDB Other tasks OPT
fuzzyDL • • • • • • Defuzzification •

Fire • • • • • Classification •
FPLGERDS •

YADLR Partial • Partial Realisation
DeLorean • • • • • •
GURDL • • • •
FRESG • • • • Realisation

LiFR Partial • • •
SMT-based solver •

DLMedia Top-k Image Retrieval •
SoftFacts Top-k CQA •

ONTOSEARCH2 Retrieval

“CON”, “ENT”, “CSAT”, “SUB”, “IR”, “BED”, and “OPT” represent consistency, entailment,
concept satisfiability, subsumption, instance retrieval, BED, and optimisations, respectively
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The case of Logic Programs
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LPs Basics (for ease, Datalog)

Predicates are n-ary
Terms are variables or constants
Facts ground atoms
For instance,

has_parent(mary , jo)

Rules are of the form

P(x)← ϕ(x,y)

where ϕ(x,y) is a formula built from atoms of the form B(z) and
connectors ∧,∨,0,1
For instance,

has_father(x , y) ← has_parent(x , y) ∧Male(y)
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Extensional database (EDB): set of facts
Intentional database (IDB): set of rules
Logic Program P:

P = EDB ∪ IDB
No predicate symbol in EDB occurs in the head of a rule in IDB

The principle is that we do not allow that IDB may redefine the
extension of predicates in EDB

EDB is usually, stored into a relational database
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LPs Semantics: FOL semantics

P∗ is constructed as follows:
1 set P∗ to the set of all ground instantiations of rules in P;
2 replace a fact p(c) in P∗ with the rule p(c)← 1
3 if atom A is not head of any rule in P∗, then add A← 0 to P∗;
4 replace several rules in P∗ having same head

A← ϕ1
A← ϕ2

...
A← ϕn

 with A← ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn .

Note: in P∗ each atom A ∈ BP is head of exactly one rule

Herbrand Base of P is the set BP of ground atoms

Interpretation is a function I : BP → {0, 1}.
Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← ϕ iff I(ϕ) ≤ I(A)
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Entailment: for a ground atom p(c)

P |= p(c) iff all models of P satisfy p(c)

Least model MP of P exists and is least fixed-point of

TP(I)(A) = I(ϕ), for all A← ϕ ∈ P∗

M can be computed as the limit of

I0 = 0
Ii+1 = TP(Ii) .

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 219 / 239



LP Query Answering

Query: is a rule of the form

q(x)← ϕ(x,y)

If P |= q(c) then c is called an answer to q
The answer set of q w.r.t. P is defined as

ans(P,q) = {c | P |= q(c)}

Efficient query answering algorithms exists
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Fuzzy LPs Basics

We consider fuzzy LPs, which extends classical LPs, where
Truth space is [0,1]
Interpretation is a mapping I : BP → [0,1]
Generalized LP rules are of the form

R(x)← ∃y.f (R1(z1), . . . ,Rk (zk ), p1(z′1), . . . , ph(z′h))

Meaning of rules: “take the truth-values of all Ri (zi ), pj (z′j ), combine
them using the truth combination function f , and assign the result to
R(x)”

Facts: ground expressions of the form 〈R(c),n〉
Meaning of facts: “the degree of truth of R(c) is at least n”

Fuzzy LP: a set of facts (extensional database) and a set of rules
(intentional database). No extensional relation may occur in the
head of a rule
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Rules:

R(x)← ∃y.ϕ(x, y)

1 x are the distinguished variables;
2 s is the score variable, taking values in [0, 1];
3 y are existentially quantified variables, called non-distinguished variables;
4 ϕ(x, y) is f (R(z),p(z′)), where R is a vector of predicates Ri and p is a vector of

fuzzy predicates pj ;
5 z, z′ are tuples of constants in KB or variables in x or y;
6 pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple cj the score

pj (cj ) ∈ [0, 1];
7 f is a monotone scoring function f : [0, 1]k+h → [0, 1], which combines the scores of

the h fuzzy predicates pj (cj ) with the k scores Ri (ci )
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Semantics of fuzzy LPs

P∗ is constructed as follows (as for the classical case):
1 set P∗ to the set of all ground instantiations of rules in P;
2 replace a fact p(c) in P∗ with the rule p(c)← 1
3 if atom A is not head of any rule in P∗, then add A← 0 to P∗;
4 replace several rules in P∗ having same head

A← ϕ1
A← ϕ2

...
A← ϕn

 with A← ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn .

Note: in P∗ each atom A ∈ BP is head of exactly one rule

Herbrand Base of P is the set BP of ground atoms

Interpretation is a function I : BP → [0, 1].

Model I |= P iff for all r ∈ P∗ I |= r , where I |= A← ϕ iff I(ϕ) ≤ I(A)

Note:

I(f (R1(c1), . . . ,Rk (ck ), p1(c′1), . . . , ph(c′h))) = f (I(R1(c1)), . . . , I(Rk (ck )), p1(c′1), . . . , ph(c′h)))
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Fuzzy LP Query Answering

Least model MP of P exists and is least fixed-point of

TP (I)(A) = I(ϕ), for all A← ϕ ∈ P∗

M can be computed as the limit of

I0 = 0
Ii+1 = TP (Ii ) .

Entailment: for a ground expression 〈q(c), s〉, s ∈ [0, 1]

P |= 〈q(c), s〉 iff least model of P satisfies I(q(c)) ≥ s

We say that s is tight iff s = sup{s′ | P |= 〈q(c), s′〉}
If P |= 〈q(c), s〉 and s is tight then 〈c, s〉 is called an answer to q
The answer set of q w.r.t. P is defined as

ans(P, q) = {〈c, s〉 | P |= 〈q(c), s〉, s is tight}

Top-k Retrieval: Given a fuzzy LP P, and a query q, retrieve k answers 〈c, s〉 with maximal
scores and rank them in decreasing order relative to the score s, denoted

ansk (P, q) = Topk ans(P, q) .
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Fuzzy LPs may be tricky:

〈A,0〉
A ← (A + 1)/2

In the minimal model the truth of A is 1 (requires infinitely many
TP iterations)!
There are several ways to avoid this pathological behavior:

We may consider L = {0, 1
n ,

2
n . . . ,

n−1
n ,1}, n natural number, e.g.

n = 100
In A← f (B1, . . . ,Bn), f is bounded, i.e. f (x1, . . . , xn) ≤ xi
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Example: Soft shopping agent

I may represent my preferences in Logic Programming with the rules

Pref1(x, p) ← HasPrice(x, p) ∧ LS(10000, 14000)(p)

Pref2(x) ← HasKM(x, k) ∧ LS(13000, 17000)(k)

Buy(x, p) ← 0.7 · Pref1(x, p) + 0.3 · Pref2(x)

ID MODEL PRICE KM
455 MAZDA 3 12500 10000
34 ALFA 156 12000 15000

1812 FORD FOCUS 11000 16000
.
.
.

.

.

.
.
.
.

.

.

.

Problem: All tuples of the database have a score:

We cannot compute the score of all tuples, then rank them. Brute force approach not feasible for very large

databases

Top-k problem: Determine efficiently just the top-k ranked tuples, without evaluating the score of all tuples. E.g. top-3
tuples

ID PRICE SCORE
1812 11000 0.6
455 12500 0.56
34 12000 0.50
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General top-down query procedure for Many-valued
LPs

Idea: use theory of fixed-point computation of equational systems over truth space
(complete lattice or complete partial order)
Assign a variable xi to an atom Ai ∈ BP
Map a rule A← f (A1, . . . ,An) ∈ P∗ into the equation xA = f (xA1 , . . . , xAn )

A LP P is thus mapped into the equational system
x1 = f1(x11 , . . . , x1a1

)

...
xn = fn(xn1 , . . . , xnan )

fi is monotone and, thus, the system has least fixed-point, which is the limit of

y0 = 0
yi+1 = f(yi ) .

where f = 〈f1, . . . , fn〉 and f(x) = 〈f1(x1), . . . , fn(xn)〉
The least-fixed point is the least model of P
Consequence: If top-down procedure exists for equational systems then it works for fuzzy
LPs too!
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Procedure Solve(S,Q)
Input: monotonic system S = 〈L,V , f〉, where Q ⊆ V is the set of query variables;
Output: A set B ⊆ V , with Q ⊆ B such that the mapping v equals lfp(f ) on B.

1. A : = Q, dg : = Q, in : = ∅, for all x ∈ V do v(x) = 0, exp(x) = 0
2. while A 6= ∅ do
3. select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi )
4. r : = fi (v(xi1 ), ..., v(xiai

))

5. if r � v(xi ) then v(xi ) : = r , A : = A ∪ (p(xi ) ∩ dg) fi
6. if not exp(xi ) then exp(xi ) = 1, A : = A ∪ (s(xi ) \ in), in : = in ∪ s(xi ) fi

od

For q(x)← φ ∈ P, with s(q) we denote the set of sons of q w.r.t. r , i.e. the set of
intentional predicate symbols occurring in φ. With p(q) we denote the set of parents of
q, i.e. the set p(q) = {pi : q ∈ s(pi , r)} (the set of predicate symbols directly
depending on q).
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The top-down procedure can be extended to
fuzzy Normal Logic Programs (Logic programs with non-monotone
negation)
Many-valued Normal Logic Programs under Any-world Assumption
Logic Programs, without requiring the grounding of the program

Other approaches for top-down methods for monotone fuzzy LPs:
Magics sets like methods: yet to investigate ...
There are also extensions to Fuzzy Disjunctive Logic Programs
with or without default negation

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 229 / 239



Top-k retrieval in LPs

If the database contains a huge amount of facts, a brute force
approach fails:

one cannot anymore compute the score of all tuples, rank all of
them and only then return the top-k

Better solutions exists for restricted fuzzy LP languages: Datalog
+ restriction on the score combination functions appearing in the
body
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Basic Idea

We do not compute all answers, but determine answers
incrementally
At each step i , from the tuples seen so far in the database, we
compute a threshold δ
The threshold δ has the property that any successively retrieved
answer will have a score s ≤ δ
Therefore, we can stop as soon as we have gathered k answers
above δ, because any successively computed answer will have a
score below δ

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 231 / 239



Example

Logic Program P is
q(x)← p(x)
p(x)← min(r1(x , y), r2(y , z))

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75
4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
...

...
...

...
...

...
...

What is
Top1(P, q) = Top1{〈c, s〉 | P |= q(c, s)} ?
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q(x)← p(x)
p(x)← min(r1(x, y), r2(y, z))

RecordID r1 r2
1 a b 1.0 m h 0.95
2 c d 0.9 m j 0.85
3 e f 0.8 f k 0.75 ←

→ 4 l m 0.7 m n 0.65
5 o p 0.6 p q 0.55
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Action: STOP, top-1 tuple score is equal or above threshold 0.75 = max(min(1.0, 0.75),min(0.7, 0.95))

Queue δ
− 0.75

Predicate Answers
q 〈e, 0.75〉〈l, 0.7〉
p 〈e, 0.75〉, 〈l, 0.7〉

Top1(P, q) = {〈e, 0.75〉}

Note: no further answer will have score above threshold δ
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Procedure TopAnswers(L,K, q, k)
Input: Truth space L, KBK = 〈F, P〉, query relation q, k ≥ 1
Output: Mapping rankedList such that rankedList(q) contains top-k answers of q
Init: δ = 1, for all predicates p in P do

if p intensional then rankedList(p) = ∅, Q(p) := ∅ fi
if p extensional then rankedList(p) = Tp fi

endfor
1. loop
2. if A = ∅ then A := {q}, dg := {q}, in := ∅, rL′ := rankedList, initialise all pointers ptr r

i to 0
3. for all intensional predicates p do exp(p) = false endfor

fi
4. select p ∈ A, A := A \ {p}, dg := dg ∪ s(p)
5. 〈t, s〉 := getNextTuple(p)
6. if 〈t, s〉 6= null then rankedList(p) := rankedList(p) ∪ {〈t, s〉}, A := A ∪ (p(p) ∩ dg) fi
7. if not exp(p) then exp(p) = true, A := A ∪ (s(p) \ in), in := in ∪ s(p) fi
8. Update threshold δ
9. until (rankedList(q) does contain k top-ranked tuples with score above query rule threshold)

or ((rL′ = rankedList) and A = ∅)
10. return top-k ranked tuples in rankedList(q)
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Procedure getNextTuple(p)
Input: intensional relation symbol p. Consider set of rulesR = {r | r : p(x)← f (A1, . . . , An) ∈ P}
Output: Next instance of p together with the score
Init: Let pi be the relation symbol occurring in Ai
1. if Q(p) 6= ∅ then

〈t, s〉 := getTop(Q(p)), remove 〈t, s〉 from Q(p), return {〈t, s〉} fi
loop

2. for all r ∈ R do
3. Generate the set T of all new valid join tuples t for rule r ,

using tuples in rankedList(pi ) and pointers prt r
i

4. for all t ∈ T do
5. s := compute the score of p(t) using f ;
6. if neither 〈t, s′〉 ∈ rankedList(p) nor 〈t, s′〉 ∈ Q(p) with s � s′ then

insert 〈t, s〉 into Q(p) fi
endfor

endfor
until Q(p) 6= ∅ or no new valid join tuple can be generated

7. if Q(p) 6= ∅ then 〈t, s〉 := getTop(Q(p)), remove 〈t, s〉 from Q(p), return 〈t, s〉
else return null fi
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Threshold computation
For an intentional predicate p, head of a rule r : p(x)← f (p1, p2, . . . , pn).

consider a threshold variable δp

with r.t⊥pi
(r.t>pi

) we denote the last tuple seen (the top ranked one) in rankedList(p, r)

we define

p>i = max(δpi , r.t>pi
.score)

p⊥i = δ
pi

if pi is an extensional predicate, we define

p>i = r.t>pi
.score

p⊥i = r.t⊥pi
.score

for rule r we consider the equation δ(r)

δ
p = max(f (p⊥1 , p>2 , . . . , p>n ), f (p>1 , p⊥2 , . . . , p>n ), . . . , f (p>, p>, . . . , p⊥n ))

consider the set of equations of all equations involving intentional predicates, i.e.

∆ =
⋃

r∈P

{δ(r)} .

for a query q(x), the threshold δ of the TopAnswers algorithm is defined as to be

δ = δ̄
q
,

where δ̄q is the solution to δq in the minimal solution ∆̄ of the set of equations ∆.
note that δ̄q , can be computed iteratively as least fixed-point
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Complexity

The problem of determining the truth of ground q in least model of P is

O(|P∗|h(a + p))

where h is the cardinality of the truth space, a is max arity of functions, p
is max numbers of predecessors of an atom

The problem of determining top-k answers to q is

O(|P∗|h(a log |H|+ |P|h(ā + |Dq |)))

H is Herbrand universe
Dq is set of intentional relation symbols that depend on q
ā = max(a, r), where r is the number of rules
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Annotation domains & Datalog

For Datalog, it it is like for RDFS
The complexity is inherited from their fuzzy variants if lattice is
finite, else conjectured undecidable in general

U. Straccia, F. Bobillo From Fuzzy to Annotated SW Languages 238 / 239



That’s it !
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